深度学习教程Deep Learning Tutorials
Deep Learning Tutorials
Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence. See these course notes for a brief introduction to Machine Learning for AI and an introduction to Deep Learning algorithms.
Deep Learning is about learning multiple levels of representation and abstraction that help to make sense of data such as images, sound, and text. For more about deep learning algorithms, see for example:
- The monograph or review paper Learning Deep Architectures for AI (Foundations & Trends in Machine Learning, 2009).
- The ICML 2009 Workshop on Learning Feature Hierarchies webpage has a list of references.
- The LISA public wiki has a reading list and a bibliography.
- Geoff Hinton has readings from 2009’s NIPS tutorial.
The tutorials presented here will introduce you to some of the most important deep learning algorithms and will also show you how to run them using Theano. Theano is a python library that makes writing deep learning models easy, and gives the option of training them on a GPU.
The algorithm tutorials have some prerequisites. You should know some python, and be familiar with numpy. Since this tutorial is about using Theano, you should read over the Theano basic tutorial first. Once you’ve done that, read through our Getting Started chapter – it introduces the notation, and [downloadable] datasets used in the algorithm tutorials, and the way we do optimization by stochastic gradient descent.
The purely supervised learning algorithms are meant to be read in order:
- Logistic Regression - using Theano for something simple
- Multilayer perceptron - introduction to layers
- Deep Convolutional Network - a simplified version of LeNet5
The unsupervised and semi-supervised learning algorithms can be read in any order (the auto-encoders can be read independently of the RBM/DBN thread):
- Auto Encoders, Denoising Autoencoders - description of autoencoders
- Stacked Denoising Auto-Encoders - easy steps into unsupervised pre-training for deep nets
- Restricted Boltzmann Machines - single layer generative RBM model
- Deep Belief Networks - unsupervised generative pre-training of stacked RBMs followed by supervised fine-tuning
Building towards including the mcRBM model, we have a new tutorial on sampling from energy models:
- HMC Sampling - hybrid (aka Hamiltonian) Monte-Carlo sampling with scan()
- Building towards including the Contractive auto-encoders tutorial, we have the code for now:
-
- Contractive auto-encoders code - There is some basic doc in the code.
- Recurrent neural networks with word embeddings and context window:
- LSTM network for sentiment analysis:
- Energy-based recurrent neural network (RNN-RBM):
Note that the tutorials here are all compatible with Python 2 and 3, with the exception of Modeling and generating sequences of polyphonic music with the RNN-RBM which is only available for Python 2.
from: http://deeplearning.net/tutorial/
深度学习教程Deep Learning Tutorials的更多相关文章
- 学习笔记之深度学习(Deep Learning)
深度学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0 深度学习(deep lea ...
- 深度学习(Deep Learning)资料大全(不断更新)
Deep Learning(深度学习)学习笔记(不断更新): Deep Learning(深度学习)学习笔记之系列(一) 深度学习(Deep Learning)资料(不断更新):新增数据集,微信公众号 ...
- 深度学习(deep learning)
最近deep learning大火,不仅仅受到学术界的关注,更在工业界受到大家的追捧.在很多重要的评测中,DL都取得了state of the art的效果.尤其是在语音识别方面,DL使得错误率下降了 ...
- 读李宏毅《一天看懂深度学习》——Deep Learning Tutorial
大牛推荐的入门用深度学习导论,刚拿到有点懵,第一次接触PPT类型的学习资料,但是耐心看下来收获还是很大的,适合我这种小白入门哈哈. 原PPT链接:http://www.slideshare.net/t ...
- 如何正确理解深度学习(Deep Learning)的概念
现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有 ...
- 深度学习研究组Deep Learning Research Groups
Deep Learning Research Groups Some labs and research groups that are actively working on deep learni ...
- 深度学习数据集Deep Learning Datasets
Datasets These datasets can be used for benchmarking deep learning algorithms: Symbolic Music Datase ...
- Caffe——清晰高效的深度学习(Deep Learning)框架
Caffe(http://caffe.berkeleyvision.org/)是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清(http://daggerfs.com/ ...
- 深度学习(deep learning)优化调参细节(trick)
https://blog.csdn.net/h4565445654/article/details/70477979
随机推荐
- Mysql学习之order by的工作原理
在你开发应用的时候,一定会经常碰到需要根据指定的字段排序来显示结果的需求.假设你要查询城市是“杭州”的所有人名字,并且按照姓名排序返回前 1000 个人的姓名.年龄. 查询语句为: ; 全字段排序 为 ...
- Jmeter----请求的reponse结果中的某个参数作为JDBC Request的查询条件
一.前言 数据库连接成功,若不会的查看:https://www.cnblogs.com/syw20170419/p/9832402.html 二.需求 将登录账号12608523691,接口的repo ...
- iOS客户端学习之AES加密
数据加密在解密在软件开发过程中举足轻重的作用,可能有的公司在加密的时候有自己公司内部一套设计的算法,而在这方面不想浪费太大精力就可以去考虑使用第三方提供的加密算法,如AES加密算法,本篇内容介绍开源中 ...
- PHP获取机器mac代码
废话不多话,直接上代码 <?php class GetMac { public $result = array(); public $macAddrs = array(); //所有mac地址 ...
- 【LOJ】#2351. 「JOI 2017/2018 决赛」毒蛇越狱
题解 没啥特别好的算法,是个讨论题,由于0 1 ?三类数位中最少的不会超过6 如果1不超过6,那么记录\(f1(S)\)为 \(\sum_{T \subset S} val(T)\)这个可以通过类似F ...
- Python全栈开发之4、内置函数、文件操作和递归
转载请注明出处http://www.cnblogs.com/Wxtrkbc/p/5476760.html 一.内置函数 Python的内置函数有许多,下面的这张图全部列举出来了,然后我会把一些常用的拿 ...
- persistencejs:异步javascript数据库映射库
persistence.js 是一个异步的 JavaScript 对象数据库映射(ORM)框架.拥有数据库无关的独立抽象层,可轻松支持新的数据库.该软件最开始是为浏览器设计的,利用 HTML5 的 W ...
- 在 github 中新建仓库后,如何上传文件到这个仓库里面。
在 github 中新建仓库后,如何上传文件到这个仓库里面. libin@hglibin MINGW64 /e/github.io (master) $ git remote libin@hglibi ...
- 【SQL SERVER】触发器(二)
前言:上面一片文章整理了触发器的基础知识点,下面我们看看如何使用触发器以及insert和delete表: 这里我们补充一下触发器的缺点: 性能较低.我们在运行触发器时,系统处理的大部分时间花费在参照其 ...
- python动态获取对象的属性和方法 (转)
转自未知,纯个人笔记使用 首先通过一个例子来看一下本文中可能用到的对象和相关概念. #coding:utf-8 import sys def foo():pass class Cat(object): ...