深度学习教程Deep Learning Tutorials
Deep Learning Tutorials
Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence. See these course notes for a brief introduction to Machine Learning for AI and an introduction to Deep Learning algorithms.
Deep Learning is about learning multiple levels of representation and abstraction that help to make sense of data such as images, sound, and text. For more about deep learning algorithms, see for example:
- The monograph or review paper Learning Deep Architectures for AI (Foundations & Trends in Machine Learning, 2009).
- The ICML 2009 Workshop on Learning Feature Hierarchies webpage has a list of references.
- The LISA public wiki has a reading list and a bibliography.
- Geoff Hinton has readings from 2009’s NIPS tutorial.
The tutorials presented here will introduce you to some of the most important deep learning algorithms and will also show you how to run them using Theano. Theano is a python library that makes writing deep learning models easy, and gives the option of training them on a GPU.
The algorithm tutorials have some prerequisites. You should know some python, and be familiar with numpy. Since this tutorial is about using Theano, you should read over the Theano basic tutorial first. Once you’ve done that, read through our Getting Started chapter – it introduces the notation, and [downloadable] datasets used in the algorithm tutorials, and the way we do optimization by stochastic gradient descent.
The purely supervised learning algorithms are meant to be read in order:
- Logistic Regression - using Theano for something simple
- Multilayer perceptron - introduction to layers
- Deep Convolutional Network - a simplified version of LeNet5
The unsupervised and semi-supervised learning algorithms can be read in any order (the auto-encoders can be read independently of the RBM/DBN thread):
- Auto Encoders, Denoising Autoencoders - description of autoencoders
- Stacked Denoising Auto-Encoders - easy steps into unsupervised pre-training for deep nets
- Restricted Boltzmann Machines - single layer generative RBM model
- Deep Belief Networks - unsupervised generative pre-training of stacked RBMs followed by supervised fine-tuning
Building towards including the mcRBM model, we have a new tutorial on sampling from energy models:
- HMC Sampling - hybrid (aka Hamiltonian) Monte-Carlo sampling with scan()
- Building towards including the Contractive auto-encoders tutorial, we have the code for now:
-
- Contractive auto-encoders code - There is some basic doc in the code.
- Recurrent neural networks with word embeddings and context window:
- LSTM network for sentiment analysis:
- Energy-based recurrent neural network (RNN-RBM):
Note that the tutorials here are all compatible with Python 2 and 3, with the exception of Modeling and generating sequences of polyphonic music with the RNN-RBM which is only available for Python 2.
from: http://deeplearning.net/tutorial/
深度学习教程Deep Learning Tutorials的更多相关文章
- 学习笔记之深度学习(Deep Learning)
深度学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0 深度学习(deep lea ...
- 深度学习(Deep Learning)资料大全(不断更新)
Deep Learning(深度学习)学习笔记(不断更新): Deep Learning(深度学习)学习笔记之系列(一) 深度学习(Deep Learning)资料(不断更新):新增数据集,微信公众号 ...
- 深度学习(deep learning)
最近deep learning大火,不仅仅受到学术界的关注,更在工业界受到大家的追捧.在很多重要的评测中,DL都取得了state of the art的效果.尤其是在语音识别方面,DL使得错误率下降了 ...
- 读李宏毅《一天看懂深度学习》——Deep Learning Tutorial
大牛推荐的入门用深度学习导论,刚拿到有点懵,第一次接触PPT类型的学习资料,但是耐心看下来收获还是很大的,适合我这种小白入门哈哈. 原PPT链接:http://www.slideshare.net/t ...
- 如何正确理解深度学习(Deep Learning)的概念
现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有 ...
- 深度学习研究组Deep Learning Research Groups
Deep Learning Research Groups Some labs and research groups that are actively working on deep learni ...
- 深度学习数据集Deep Learning Datasets
Datasets These datasets can be used for benchmarking deep learning algorithms: Symbolic Music Datase ...
- Caffe——清晰高效的深度学习(Deep Learning)框架
Caffe(http://caffe.berkeleyvision.org/)是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清(http://daggerfs.com/ ...
- 深度学习(deep learning)优化调参细节(trick)
https://blog.csdn.net/h4565445654/article/details/70477979
随机推荐
- 洛谷 P1652圆 题解
题目传送门 这道题也就是考你对几何的了解: 圆与圆没有公共点且一个圆在另一个圆外面时,叫做圆与圆相离. 当圆心距大于两圆半径之和时,称为两圆外离: 当圆心距小于两圆半径之差的绝对值时,称为两圆内含. ...
- day6 random随机数模块
random 我们经常看到网站的随机验证码,这些都是由随机数生成的,因此我们需要了解一下随机数的模块.如何生成随机数. random 生成随机数 random.random() 生成0- ...
- vars 变量预解析
JavaScript中,你可以在函数的任何位置声明多个var语句,并且它们就好像是在函数顶部声明一样发挥作用,这种行为称为 hoisting(悬置/置顶解析/预解析).当你使用了一个变量,然后不久在函 ...
- 湖南大学ACM程序设计新生杯大赛(同步赛)B - Build
题目描述 In country A, some roads are to be built to connect the cities.However, due to limited funds, ...
- Python类总结-反射及getattr,setattr
类反射的四个基本函数 hasattr getattr setattr delattr #反射 class BlackMedium: feature = 'Ugly' def __init__(self ...
- Mybatis源码分析之结果集处理
解析封装 ResultMap 是和结果集相关的东西,最初在解析 XML 的时候,于 parseStatementNode 方法中,针对每一个 select 节点进行解析,转换为 MappedState ...
- git实现github仓库和本地仓库同步
配置git 安装git以后,打开git bash,首先要对git进行配置,输入 git config --global username "你的名字" git config --g ...
- Redis 锁的实现方案
开发中不可避免的是碰到并发请求,在数据严谨性的要求不高时,我们也不需要做什么处理,但如果碰到数据严谨性非常高的时候(例如:用户金额,秒杀产品的库存...),我们就需要慎重处理了. 解决方案多种多样,下 ...
- poj 1988 并查集(终于看懂一个了/(ㄒoㄒ)/~~)
题意:有几个stack,初始里面有一个cube.支持两种操作:1.move x y: 将x所在的stack移动到y所在stack的顶部.2.count x:数在x所在stack中,在x之下的cube的 ...
- bzoj 2724 在线区间众数
如果不是在线,就是裸的莫队. 但这道题要求在线,然后就不会了.. 标程: http://hi.baidu.com/__vani/item/ecc63f3527395283c2cf2945 算法主要是分 ...