深度学习教程Deep Learning Tutorials
Deep Learning Tutorials
Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence. See these course notes for a brief introduction to Machine Learning for AI and an introduction to Deep Learning algorithms.
Deep Learning is about learning multiple levels of representation and abstraction that help to make sense of data such as images, sound, and text. For more about deep learning algorithms, see for example:
- The monograph or review paper Learning Deep Architectures for AI (Foundations & Trends in Machine Learning, 2009).
- The ICML 2009 Workshop on Learning Feature Hierarchies webpage has a list of references.
- The LISA public wiki has a reading list and a bibliography.
- Geoff Hinton has readings from 2009’s NIPS tutorial.
The tutorials presented here will introduce you to some of the most important deep learning algorithms and will also show you how to run them using Theano. Theano is a python library that makes writing deep learning models easy, and gives the option of training them on a GPU.
The algorithm tutorials have some prerequisites. You should know some python, and be familiar with numpy. Since this tutorial is about using Theano, you should read over the Theano basic tutorial first. Once you’ve done that, read through our Getting Started chapter – it introduces the notation, and [downloadable] datasets used in the algorithm tutorials, and the way we do optimization by stochastic gradient descent.
The purely supervised learning algorithms are meant to be read in order:
- Logistic Regression - using Theano for something simple
- Multilayer perceptron - introduction to layers
- Deep Convolutional Network - a simplified version of LeNet5
The unsupervised and semi-supervised learning algorithms can be read in any order (the auto-encoders can be read independently of the RBM/DBN thread):
- Auto Encoders, Denoising Autoencoders - description of autoencoders
- Stacked Denoising Auto-Encoders - easy steps into unsupervised pre-training for deep nets
- Restricted Boltzmann Machines - single layer generative RBM model
- Deep Belief Networks - unsupervised generative pre-training of stacked RBMs followed by supervised fine-tuning
Building towards including the mcRBM model, we have a new tutorial on sampling from energy models:
- HMC Sampling - hybrid (aka Hamiltonian) Monte-Carlo sampling with scan()
- Building towards including the Contractive auto-encoders tutorial, we have the code for now:
-
- Contractive auto-encoders code - There is some basic doc in the code.
- Recurrent neural networks with word embeddings and context window:
- LSTM network for sentiment analysis:
- Energy-based recurrent neural network (RNN-RBM):
Note that the tutorials here are all compatible with Python 2 and 3, with the exception of Modeling and generating sequences of polyphonic music with the RNN-RBM which is only available for Python 2.
from: http://deeplearning.net/tutorial/
深度学习教程Deep Learning Tutorials的更多相关文章
- 学习笔记之深度学习(Deep Learning)
深度学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0 深度学习(deep lea ...
- 深度学习(Deep Learning)资料大全(不断更新)
Deep Learning(深度学习)学习笔记(不断更新): Deep Learning(深度学习)学习笔记之系列(一) 深度学习(Deep Learning)资料(不断更新):新增数据集,微信公众号 ...
- 深度学习(deep learning)
最近deep learning大火,不仅仅受到学术界的关注,更在工业界受到大家的追捧.在很多重要的评测中,DL都取得了state of the art的效果.尤其是在语音识别方面,DL使得错误率下降了 ...
- 读李宏毅《一天看懂深度学习》——Deep Learning Tutorial
大牛推荐的入门用深度学习导论,刚拿到有点懵,第一次接触PPT类型的学习资料,但是耐心看下来收获还是很大的,适合我这种小白入门哈哈. 原PPT链接:http://www.slideshare.net/t ...
- 如何正确理解深度学习(Deep Learning)的概念
现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有 ...
- 深度学习研究组Deep Learning Research Groups
Deep Learning Research Groups Some labs and research groups that are actively working on deep learni ...
- 深度学习数据集Deep Learning Datasets
Datasets These datasets can be used for benchmarking deep learning algorithms: Symbolic Music Datase ...
- Caffe——清晰高效的深度学习(Deep Learning)框架
Caffe(http://caffe.berkeleyvision.org/)是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清(http://daggerfs.com/ ...
- 深度学习(deep learning)优化调参细节(trick)
https://blog.csdn.net/h4565445654/article/details/70477979
随机推荐
- EasyUi – 6.easyui常见问题
1.进度条 2.JQuery EasyUI弹出对话框解决Asp.net服务器控件无法执行后台代码的方法 3. 三张表的连接查询现在到datagrid里 4.日期组合框DateBox设置readonly ...
- 编辑器之Sublime Text3、Notepad++
Sublime text 3 破解版是一款极其强大的代码编辑器,又是一款可以代替记事本的文本编辑器.Sublime text 3拥有着美观的界面和实用的功能,既能够完成代码的编辑又能够完成文本编辑,还 ...
- JS获取select的value和text值的简单实例
本篇文章主要是对JS获取select的value和text值的简单实例进行了介绍,需要的朋友可以过来参考下,希望对大家有所帮助 代码如下: <select id = "cityList ...
- EOJ 3263 丽娃河的狼人传说
差分约束系统,$spfa$. 首先判断无解,若某个约束的$t$大于区间长度,则一定无解. 否则一定有解,可以得到一系列的不等式: 最终区间和大于等于目前的区间和:$S[R]-S[L-1]≥val$, ...
- Python并发编程-进程池的返回值
同步或异步获取返回值 #p = Pool() #p.map(funcname,iterable) 默认异步的执行任务,且自带close,join功能 #p.apply(), 同步调用进程池的方法 #p ...
- DP 题集 2
关于 DP 的一些题目 String painter 先区间 DP,\(dp[l][r]\) 表示把一个空串涂成 \(t[l,r]\) 这个子串的最小花费.再考虑 \(s\) 字符串,\(f[i]\) ...
- shell 空间利用
root #df -h / Filesystem Size Used Avail Use% Mounted on /dev/sda3 3.3G 1.7G 1.5G 54% /
- zabbix安装配置(2.4.5)
这是第一次安装配置,直接遭遇配置文件不明晰的大坑,因在编译阶段未指明配置文件路径,导致zabbix_server启动时直接读取默认的 /usr/local/zabbix/etc/zabbix_serv ...
- zstuoj 4245 KI的斐波那契
KI的斐波那契 Time Limit: 1 Sec Memory Limit: 128 MB Submit: 550 Solved: 208 Description KI十分喜欢美丽而优雅的斐波那 ...
- python @classmethod 的使用场合
python @classmethod 的使用场合 官方的说法: classmethod(function)中文说明:classmethod是用来指定一个类的方法为类方法,没有此参数指定的类的方法为实 ...