2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage

A. Union of Doubly Linked Lists

题目描述:给出很多个双向链表,将它们连成一个双向链表。

solution
模拟,尾连头。
时间复杂度:\(O(n)\)

B. Preparing for Merge Sort

题目描述:给出\(n\)个不同的数\(a_i\),从左到右找出上升的子序列,删除,继续找,直至所有的数被删除。输出每一次找出的子序列。

solution
从左到右枚举,同时维护所有的上升序列。可以得出,靠前的序列的最后一个数是较大的,因此可以二分出当前的数\(a_i\)应该在哪一个数列。例如:
\(1, 3, 2, 5, 4\)

\(1\)

\(1, 3\)

\(1, 3\)
\(2\)

\(1, 3, 5\)
\(2\)

\(1, 3, 5\)
\(2, 4\)

时间复杂度:\(O(nlogn)\)

C. Sum of Nestings

题目描述:给出\(n, k\),求出一个有\(n\)对括号的括号序列,使得该括号序列所表示的数值为\(k\),或无解。一个括号的括号序列是这样算的:一对括号里面有多少对括号,该对括号的值就是多少,然后将所有对括号的值相加就是括号序列的值。例如:()(())的值为\(1\), (((())))的值为\(6\)。

solution
显然当\(k>\frac{n(n-1)}{2}\)时,无解。然后将题目的值等价为每对括号的贡献,即在最里面的括号的贡献最大。所以可以按照贪心策略不断地在外层加括号,加到最大后减一层,继续加括号,直至得到答案。例如:\(n=4, k=5\)
((( 的值为\(3\),不能再继续往外加。
(((),减一层
((()(的值为\(5\),已为答案
((()())),补全,即为答案。
时间复杂度:\(O(n)\)

D. Dog Show

题目描述:开始时,数轴上\(1\)~\(n\)的位置上都有食物,每个位置上的食物到了\(t_i\)时刻才能吃。开始时有一只狗在\(0\)的位置,它只能向右走,不能向左走。向右走一个单位需要一个单位的时间,吃东西不需要时间,当它到了某个位置时,如果食物能吃,则吃,否则有两个选择,一是等,二是直接跳过向右走。问在\(T\)时刻内最多能吃多少食物,注意:如果狗恰好在\(T\)时刻到了某个食物前,那个食物是不能吃到的。

solution
首先想到如果需要等,则在一开始出发时就等就好了。
假设等的时间为\(wait\),则\(x=i\)的食物能吃到的条件是\(t_i \leq wait+i <T\)
移项得:\(t_i - i \leq wait < T-i\)
假设在\(T\)时刻时狗要跑到\(x=i\)处,则\(wait\)最大为\(T-i\),因为前面的尽量要吃到,所以\(wait\)取最大值,而\(T-i\)会随\(i\)的增大而变小,即有单调性,所以可以用优先队列维护\(t_i-i\),在\(i\)不断增大时更新答案。
时间复杂度:\(O(nlogn)\)

E. Packmen

题目描述:有一个\(1 \times n\)的网格,每个网格要么是*, 要么是P,要么是.P可以随意移动,遇到*的格子会把*吃掉。每个格子可以有多个PP移动一格需要一个单位的时间,吃掉*不需要时间,问最短需要多长时间能吃掉所有*

solution
二分答案。然后从左到右分配好每个P吃哪些*。每个P有两种走法:先向右走,再向左走;或先向左走,再向右走。处理一下就好了。

时间复杂度:\(O(nlogn)\)

F. Berland Elections

题目描述:有一场选举,有\(n\)个候选人,\(m\)个选民,\(k\)个席位。选举结束后,按选票的多少将候选人排序,票数相同的按最后一张选票靠前的排在前面。然后前\(k\)个人当选,但若前\(k\)个人中有人一张选票都没有,则这个人不能当选,后面的人无须补上,即最后当选人数有可能少于\(k\)。现有\(a\)个人已经投票,且知道他们投给谁,问每个候选人人属于下列的那种情况:

  1. 一定能当选
  2. 可能能当选
  3. 一定不能当选

solution
第一种情况:第\(i\)个候选人现在排在前\(k\)位,且票数大于\(0\),且将排在他后面的人移到他之前并使他掉出前\(k\)位所需票数大于\(m-a\)。
第三种情况:剩下的\(m-a\)张票都投给他也不能将他移至前\(k\)位。
剩下的均为第二种情况。
时间复杂度:\(O(n^2)\)

G. University Classes

题目描述:有\(n\)组人,每组人在某些时间需要占用一间课室,占有的时间用一个\(7\)位二进制数表示。问最少需要多少间课室。

solution
模拟,二进制的每一位最多有多少个\(1\)。
时间复杂度:\(O(n)\)

H. Load Testing

题目描述:给出一个序列\(a_i\),将某些数增大,使得该序列变成一个先严格上升,再严格下降的序列,求出最少的增值和(每个数的增值可以不一样)

solution
先预处理当\(i\)为山峰时\(1\)~\(i\)的增值和,以及\(i\)到\(n\)的增值和,还有相对应的\(i\)的峰值。然后枚举山峰,通过预处理的值可以得出答案。

时间复杂度:\(O(n)\)

I. Noise Level

题目描述:有一个\(n \times m\)的网格,每个网格要么是住宅,要么是障碍,要么是噪声源。每个噪声源对每个格子的影响为\(\frac{q}{2^d}\),其中\(d\)为噪声源到格子的最短距离(路径中不能有障碍,不能越出边界),若不能连通,则\(d\)为无穷大。求噪音总和大于\(p\)的格子有多少个。

solution
因为\(q\)比较小,所以直接暴力就好了。

时间复杂度:\(O(nm(logq)^2)\)

J. Students Initiation

题目描述:给出一个无向图,将其变成有向图,使得每个点的出度最大值最小,输出出度最大的最小值和有向图。

solution
二分答案,然后边与点连边,跑一次网络流判断是否可行。

时间复杂度:不可估计

K. Travel Cards

题目描述:依次乘坐\(n\)条路线(有重复),车票为\(a\)元,换乘为\(b\)元(路线\(i\)的终站与\(i+1\)的起点相同时为换乘)。现在可以为不多于\(k\)条线路买交通卡,每张卡的费用为\(f\),买卡后,乘坐该路线(双向)不用给钱,问乘坐这\(n\)条线路最少需要多少钱。

solution
首先若没有交通卡,则每一条路线的钱是知道的,所以可以将每条线路的花费总和算出来,从大到小排序,若买卡比较便宜,则买卡,否则不买。

时间复杂度:\(O(nlogn)\)

L. Berland SU Computer Network

题目描述:有一个树,给出这棵树的每一个节点的每一个分叉连着的是哪些点,还原这棵树,或无解。

solution
若有解,则每次找只有一个分叉的点,这些点为叶子节点,然后在其它点的分叉删掉这些点,若某个点的分叉删点该叶子节点后分叉减少,则这个点连着叶子节点。不断重复,直至所有点删除。
无解情况则是在找到这棵树后构出每个节点的分叉连着的点,与输入对比,若不同,则无解。
时间复杂度:\(O(n^2)\)

M. Weather Tomorrow

题目描述:给出一个序列,判断它是否时等差数列,若是,则输出序列的下一项,否则输出序列的最后一项。

solution
求公差,枚举判断。

时间复杂度:\(O(n)\)

2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage的更多相关文章

  1. 2018-2019 ACM-ICPC, NEERC, Southern Subregional Contest, Qualification Stage(11/12)

    2018-2019 ACM-ICPC, NEERC, Southern Subregional Contest, Qualification Stage A. Coffee Break 排序之后优先队 ...

  2. D. Dog Show 2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage (Online Mirror, ACM-ICPC Rules, Teams Preferred)

    http://codeforces.com/contest/847/problem/D 巧妙的贪心 仔细琢磨... 像凸包里的处理 #include <cstdio> #include & ...

  3. 2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage (Online Mirror, ACM-ICPC Rules, Teams Preferred)

    题目链接:http://codeforces.com/problemset/problem/847/I I. Noise Level time limit per test 5 seconds mem ...

  4. 2019.04.18 第六次训练 【2018-2019 ACM-ICPC, NEERC, Southern Subregional Contest, Qualification Stage】

    题目链接: https://codeforces.com/gym/101911 又补了set的一个知识点,erase(it)之后it这个地址就不存在了,再引用的话就会RE A: ✅ B:  ✅ C: ...

  5. 2018-2019 ICPC, NEERC, Southern Subregional Contest

    目录 2018-2019 ICPC, NEERC, Southern Subregional Contest (Codeforces 1070) A.Find a Number(BFS) C.Clou ...

  6. Codeforces 2018-2019 ICPC, NEERC, Southern Subregional Contest

    2018-2019 ICPC, NEERC, Southern Subregional Contest 闲谈: 被操哥和男神带飞的一场ACM,第一把做了这么多题,荣幸成为7题队,虽然比赛的时候频频出锅 ...

  7. 2018.10.20 2018-2019 ICPC,NEERC,Southern Subregional Contest(Online Mirror, ACM-ICPC Rules)

    i207M的“怕不是一个小时就要弃疗的flag”并没有生效,这次居然写到了最后,好评=.= 然而可能是退役前和i207M的最后一场比赛了TAT 不过打得真的好爽啊QAQ 最终结果: 看见那几个罚时没, ...

  8. 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror) Solution

    从这里开始 题目列表 瞎扯 Problem A Find a Number Problem B Berkomnadzor Problem C Cloud Computing Problem D Gar ...

  9. Codeforces1070 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred)总结

    第一次打ACM比赛,和yyf两个人一起搞事情 感觉被两个学长队暴打的好惨啊 然后我一直做傻子题,yyf一直在切神仙题 然后放一波题解(部分) A. Find a Number LINK 题目大意 给你 ...

随机推荐

  1. Object 接受集合里面的任意数据类型 所有的类型默认继承object

  2. py2exe使用总结

    假如你用python写了个小程序,想给别人用或者给别人演示,但他电脑里没装python.wxpython等,这时候你可以试试py2exe,它是一个将python脚本转换成windows上的可执行程序( ...

  3. 【刷题】BZOJ 1095 [ZJOI2007]Hide 捉迷藏

    Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩 捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条 ...

  4. 【Visual Installer】如何读取与写入注册表信息

    引入:using Microsoft.Win32; (1)读取注册表信息 代码: RegistryKey rsg = null; rsg = Registry.LocalMachine.OpenSub ...

  5. 【BZOJ1063】【NOI2008】道路设计(动态规划)

    [BZOJ1063][NOI2008]道路设计(动态规划) 题面 BZOJ 题解 发现每个点最多只能被修一次等价于每个点最多只能和两条铁路相邻 考虑一个\(dp\) 设\(f[i][0/1/2]\)表 ...

  6. C++操作Windows WIFI

    原文链接地址:https://blog.csdn.net/just_do_1122/article/details/78031024 实现功能     无线网卡列表     无线热点扫面     无线 ...

  7. 框架----Django之文件上传

    一.文件上传 1. 浏览器访问 http://127.0.0.1:8000/f1/ http://127.0.0.1:8000/f2/ 2. urls from django.conf.urls im ...

  8. django 表单验证和字段验证

    表单验证和字段验证 表单验证发生在数据验证之后.如果你需要自定义这个过程,有几个不同的地方可以修改,每个地方的目的不一样.表单处理过程中要运行三种类别的验证方法.它们通常在你调用表单的is_valid ...

  9. Codeforces 895.D String Mark

    D. String Mark time limit per test 4 seconds memory limit per test 256 megabytes input standard inpu ...

  10. Servlet 介绍

    JSP 的本质就是 Servlet,开发者把编写好的 JSP 页面部署在 Web 容器中后,Web 容器会将 JSP 编译成对应的 Servlet. Servlet 的开发 Servlet 是个特殊的 ...