2017 计蒜之道 初赛 第五场 A. UCloud 机房的网络搭建
贪心。
从大到小排序之后进行模拟,注意$n=1$和$n=0$的情况。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <cmath>
using namespace std; int n,m;
int a[100010]; bool cmp(int x,int y)
{
return x>y;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++) scanf("%d",&a[i]); sort(a+1,a+1+m,cmp); int now = n; if(n==0||n==1)
{
printf("0\n");
return 0;
} for(int i=1;i<=m;i++)
{
if(a[i] <= 0) break;
if(a[i]<now)
{
now = now - a[i];
a[i+1]--;
}
else
{
now = 0;
printf("%d\n",i);
break;
}
} if(now!=0)
{
printf("Impossible\n");
} return 0;
}
2017 计蒜之道 初赛 第五场 A. UCloud 机房的网络搭建的更多相关文章
- 2017 计蒜之道 初赛 第五场 D. UCloud 的安全秘钥(困难)
小数据打表,大数据暴力. 导致超时的主要原因是$m$小的询问次数太多,可以把$m≤10$的答案直接暴力打表存起来,$m>10$的用$C$题的方法即可. #include <iostream ...
- 2017 计蒜之道 初赛 第五场 C. UCloud 的安全秘钥(中等)
暴力. $O(m*n)$的算法可以通过此题,每次询问$O(m)$扫$S$数组,统计不同数字的个数,每次移动最多只会变化两个数字,如果不同数字个数为$0$,那么答案加$1$. #include < ...
- 2017 计蒜之道 初赛 第五场 B. UCloud 的安全秘钥(简单)
暴力. 暴力枚举$S$串的每一个长度为$m$的子串,排序判断即可. #include <iostream> #include <cstdio> #include <cst ...
- 2017 计蒜之道 初赛 第五场 UCloud 的安全秘钥(中等)
每个 UCloud 用户会构造一个由数字序列组成的秘钥,用于对服务器进行各种操作.作为一家安全可信的云计算平台,秘钥的安全性至关重要.因此,UCloud 每年会对用户的秘钥进行安全性评估,具体的评估方 ...
- 2017 计蒜之道 初赛 第三场 D. 腾讯狼人杀 (点边都带权的最大密度子图)
点边都带权的最大密度子图,且会有必须选的点. 求\(\frac{\sum w_e}{k*(2n-k)}\)的最大值,其中k为子图点数 设\[h(g) = \sum w_e - g*(2nk-k^2)\ ...
- 2018 计蒜之道 初赛 第五场 A 贝壳找房搬家
贝壳找房换了一个全新的办公室,每位员工的物品都已经通过搬家公司打包成了箱子,搬进了新的办公室了,所有的箱子堆放在一间屋子里(这里所有的箱子都是相同的正方体),我们可以把这堆箱子看成一个 x*y*z 的 ...
- 2017 计蒜之道 初赛 第一场 A、B题
A题 阿里的新游戏 题目概述: 阿里九游开放平台近日上架了一款新的益智类游戏——成三棋.成三棋是我国非常古老的一个双人棋类游戏,其棋盘如下图所示: 成三棋的棋盘上有很多条线段,只能在线段交叉点上放入棋 ...
- 2017 计蒜之道 初赛 第一场 A 阿里的新游戏
题链:https://nanti.jisuanke.com/t/15499 这题观察图纸可知成三线段上的相邻点之间的距离有1,2,3三种情况的,同时要成线段必然是同横坐标或者纵坐标,然后我们排除掉穿过 ...
- 2017 计蒜之道 初赛 第一场 B阿里天池的新任务(简单)
题链:"https://nanti.jisuanke.com/t/15500" 本来希望通过找循环节然后套KMP来通过后面题的,可是只过了B题,可能循环节不一定是存在的. #inc ...
随机推荐
- Bash to check SSL cert expired
Code like this, You can send out a email to notice $ cat urls.txt www.baidu.com $ cat cert_chk.sh #! ...
- NOIP模拟赛11
T1 [HAOI2016]放棋子 https://daniu.luogu.org/problem/show?pid=3182 障碍交换行不影响 所以第i列有障碍的行换到第i行 然后错排公式 本校自测要 ...
- 关于拉格朗日乘子法与KKT条件
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...
- Javascript动态绑定
<div onclick="test()"></div> <script> function test(){ //code } </scr ...
- .net core 中 Identity Server 4 Topic 之 Startup
约定 简称 Id4. Id4在.net core 中的使用符合.net core 的约定架构,即Services来注册服务,middleware方式集成. 1. 配置服务 通过DI注入: public ...
- ⑦ 设计模式的艺术-13.代理(Proxy)模式
为什么需要代理模式 中介隔离作用:在某些情况下,一个客户类不想或者不能直接引用一个委托对象,而代理类对象可以在客户类和委托对象之间起到中介的作用,其特征是代理类和委托类实现相同的接口. 开闭原则,增加 ...
- Use of exceptionless, 作全局日志分布式记录处理
Download latest release of exceptionless on github and deploy on Window server, by default exception ...
- 【leetcode 简单】第十二题 报数
报数序列是指一个整数序列,按照其中的整数的顺序进行报数,得到下一个数.其前五项如下: 1. 1 2. 11 3. 21 4. 1211 5. 111221 1 被读作 "one 1&quo ...
- Tinyos Makerules解读
Makerules 文件解读 位于/opt/tinyos-2.1.2/support/make #-*-Makefile-*- vim:syntax=make #$Id: Makerules,v 1. ...
- 商城项目(ssm+dubbo+nginx+mysql统合项目)总结(3)
我不会在这里贴代码和详细步骤什么的,我觉得就算我把它贴出来,你们照着步骤做还是会出很多问题,我推荐你们去看一下黑马的这个视频,我个人感觉很不错,一步一步走下来可以学到很多东西.另外,视频和相关文档的话 ...