BP神经网络研究(一)
本随笔参考文章:《BP神经网络详解与实例》(链接: https://pan.baidu.com/s/1e2niIvD9KtLXEqwXtgdXxw 密码: vb8d)
本随笔原创,转发请注明原处:https://www.cnblogs.com/nanyunan/p/9494946.html
1 神经网络单元示例

2 神经网络示例

3 几个重要公式
3.1 单元前向公式
y=f[sum(wi*xi)-θ]
其中,wi是输入权重,xi是输入值,sum是求和函数,θ是阈(yu)值,f是激发函数
其中,f激发函数主要有:sgn,Sigmoid
其中,sgn是符号函数(https://baike.baidu.com/item/sign/115763)
其次,Sigmoid是S型函数(https://baike.baidu.com/item/Sigmoid%E5%87%BD%E6%95%B0/7981407?fr=aladdin)
3.2 单元后向公式
权重迭代公式
假设有n个样本训练网络,p表示当前训练样本,p-1表示上一个训练样本。
ωlp(i,j)=ωlp-1(i,j)+ηδlpαl-1p(j)
其中,ωlp(i,j)表示第l层第i个神经单元的第j个输入权重
其中,ωlp(i,j)表示新的权重
其中,ωlp-1(i,j)表示旧的权重
其中,η是学习效率,取值(0,1)之间,一般默认取值0.1。η过小,收敛过慢,精度高。η过大,收敛快,优解容易丢失。
其中,δlp(i)=f’Sum[δl+1p(j)ωl+1p-1(j,i)]
其中,f’是激发函数f的导函数
其中,δl+1p(j)表示下一层第j个神经单元的δ值
其中,ωl+1p-1(j,i)表示下一层第j个神经单元第i个权重的旧值
其次,δLp(i)=f’(tp(i)-aLp(i))
其中,L表示最后一层
其中,tp(i)表示最后一层第i个输出神经单元的真值
其中,aLp(i)表示最后一层第i个输出神经单元的输出值
4 编程实例
使用语言:C#
源代码(链接: https://pan.baidu.com/s/1nsh8T2VCISZFQb0fU_wBXg 密码: y8pi)
实例(包含程序,说明书,样本)(链接: https://pan.baidu.com/s/1sWkEOGqKXC6uMCGzD9eg_Q 密码: sjfh)
样本(链接: https://pan.baidu.com/s/1O9XlLOGXRbC0PfAVo9LULA 密码: b9st)
4.1 样本

4.2 样本文件

4.3 创建网络大小

4.4 训练

4.5 询问


BP神经网络研究(一)的更多相关文章
- 基于BP神经网络的字符识别研究
基于BP神经网络的字符识别研究 原文作者:Andrew Kirillov. http://www.codeproject.com/KB/cs/neural_network_ocr.aspx 摘要:本文 ...
- 字符识别OCR研究一(模板匹配&BP神经网络训练)
摘 要 在MATLAB环境下利用USB摄像头採集字符图像.读取一帧保存为图像.然后对读取保存的字符图像,灰度化.二值化,在此基础上做倾斜矫正.对矫正的图像进行滤波平滑处理,然后对字符区域进行提取切割出 ...
- BP神经网络原理及python实现
[废话外传]:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容: 看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心 ...
- 机器学习(一):梯度下降、神经网络、BP神经网络
这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络.梯度下降算法,然后顺便又延伸温习了一下线性代数.概率论以及求导.总的来说,学到不少知 ...
- 【转】漫谈ANN(2):BP神经网络
上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能.由这些人工神经元构建出来的网络,才能够具有学习.联想.记忆和模式识别的能力.BP网络就是一种简单的人工神经 ...
- 利用BP神经网络预测水道浅滩演变
论文 <基于现代技术的河道浅滩演变研究> 利用BP神经网络来预测浅滩演变 BP输出因子:浅滩的年平均淤积厚度以及浅滩上最小水深,是反映浅滩变化的两个基本指标,是确定浅滩航道尺度能否满足航行 ...
- 神经网络中的BP神经网络和贝叶斯
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体 ...
- RBF神经网络和BP神经网络的关系
作者:李瞬生链接:https://www.zhihu.com/question/44328472/answer/128973724来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- NO.2:自学tensorflow之路------BP神经网络编程
引言 在上一篇博客中,介绍了各种Python的第三方库的安装,本周将要使用Tensorflow完成第一个神经网络,BP神经网络的编写.由于之前已经介绍过了BP神经网络的内部结构,本文将直接介绍Tens ...
随机推荐
- Eclipse注释配置
新的文件/** * @ClassName: ${type_name} * @Description: ${todo} * @author ${user} * @date ${date} ${time ...
- FFmpeg库简介
1.FFmpeg基本组成 FFmpeg框架的基本组成包含AVFormat.AVCodec.AVFilter.AVDevice.AVUtils等模块库,如下图所示. libavformat:用于各种音视 ...
- nginx-rtmp-module--------------WIKI
https://github.com/arut/nginx-rtmp-module/wiki/Directives#idle_streams ============================= ...
- sha1sum校验下载的文件
[root@mhc1 test]# sha1sum Percona-XtraBackup-2.4.8-r97330f7-jessie-x86_64-bundle.tara9c6b1c7cb3bf98b ...
- Linux Debian 下LNMP服务器——nginx+mysql+php环境搭建及配置
昨天刚给公司服务器装了LNMP服务器环境,在这里简单记录一下过程备忘. 这里我在安装的时候是用的Dotdeb源,仅供参考. 1.导入Dotdeb源,据说Dotdeb源里的软件版本比较新. 在向源中导入 ...
- zoj1001-A + B Problem
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1 A + B Problem Time Limit: 2 Seconds ...
- 【BZOJ1013】球形空间产生器sphere
高斯消元模板题 #include <cstdio> #include <cstring> #include <algorithm> #include <ios ...
- c++ 享元模式(flyweight)
举个围棋的例子,围棋的棋盘共有361格,即可放361个棋子.现在要实现一个围棋程 序,该怎么办呢?首先要考虑的是棋子棋盘的实现,可以定义一个棋子的类,成员变量包括棋子的颜色.形状.位置等信息,另外再定 ...
- 路由软件quagga和bird日志配置打印ospf邻居变化
背景: 网络侧反馈偶尔会出现ospf邻居状态变化:full-> other status -> full.历史原因,线上运行的路由软件有quagga和bird两种.两种路由软件的日志级别配 ...
- 洛谷 P2569[SCOI2010]股票交易(动规+单调队列)
//只能写出裸的动规,为什么会有人能想到用单调队列优化Orz 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测 ...