「HNOI 2015」亚瑟王
\(Description\)
有\(n\)张卡牌,每一张卡牌有\(p_i\)的概率发动,并造成\(d_i\)点伤害.一共有\(r\)轮,每一轮按照编号从小到大依次考虑,如果这张牌已经发动过则跳过该牌,否则以\(p_i\)的概率发动,如果发动成功则造成伤害然后结束该轮,否则跳过这张牌.问期望造成的伤害,\(T\)组询问
\(n<=220,r<=132,T<=444\)
\(Solution\)
这道的答案怎么算应该挺好想的吧.
\]
\(dp[i]\) 表示第i张牌出现的概率.
但是现在问题就是怎么算\(dp\)数组啊?
\(dp[1]\)显然啊.为:
\]
\((1-p[1])^r\)为一直不出的概率.
但是现在好像貌似只能看出来\(dp[1]\)啊 \(QAQ\)
接续上\(dp\)了,我们令\(f[i][j]\)为在\(r\)轮中,前\(i\)张卡中一共出了\(j\)张的概率,
至于转移方程,还需要分类讨论一下:
\(Case\ 1:\)
\(f[i][j]\)由\(f[i-1][j-1]\)转移
这表示选了第\(i\)张牌,现在在\(r\)轮中有\(j-1\)轮选的是\(i\)之前的牌,而\(i\)没有被选到,所以\(i\)被选到的轮数为\(:r-j+1\)
转移方程为:
\]
$ Case\ 2:\(
\)f[i][j]\(由\)f[i-1][j]$转移而来.
表示不选第i张牌
那么在\(r\)轮中已经过了\(r-j\)轮了,剩下的不选\(i\)的概率为\((1-p[i])^{r-j}\)
所以转移方程为:
\]
现在算出来了\(f\)数组,接下来就要来算\(dp\)数组了
\]
\(Code\)
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#define rg register
#define file(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
int read(){
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
}
int d[1001],r,n;
double f[1001][1001],power[1001][1001],p[1001],dp[1001];
void init(){
memset(f,0,sizeof(f));
memset(dp,0,sizeof(dp));
n=read(),r=read();
for(int i=1;i<=n;i++)
scanf("%lf",&p[i]),d[i]=read();
for(int i=1;i<=n;i++){
power[i][0]=1;
for(int j=1;j<=r;j++)
power[i][j]=power[i][j-1]*(1-p[i]);
}
}
void solve(){
init();
f[1][0]=power[1][r],f[1][1]=dp[1]=1.0-f[1][0];
for(int i=2;i<=n;i++)
for(int j=0;j<=min(i,r);j++){
if(j)
f[i][j]+=f[i-1][j-1]*(1.0-power[i][r-j+1]);
if(i!=j) f[i][j]+=f[i-1][j]*power[i][r-j];
}
for(int i=2;i<=n;i++)
for(int j=0;j<=min(i-1,r);j++)
dp[i]+=f[i-1][j]*(1-power[i][r-j]);
double ans=0;
for(int i=1;i<=n;i++)
ans+=dp[i]*d[i];
printf("%0.10lf\n",ans);
}
int main(){
int T=read();
while(T--)
solve();
}
「HNOI 2015」亚瑟王的更多相关文章
- 「HNOI 2015」实验比较
\(Description\) 有\(n\)个元素,对于每个元素\(x_i\)最多知道一个形如\(x_j < x_i\)或\(x_j=x_i\)的条件,问有多少合法的序列.合法的序列满足每个元素 ...
- 「HNOI 2015」菜肴制作
题目链接 戳我 \(Description\) 有若干限制,需要求一个\(1\)到\(n\)的排列,每个限制\((x,y)\)表示\(x\)必须在\(j\)之前,并要求所求的排列满足所有限制并让\(1 ...
- 「HNOI 2015」落忆枫音
题目链接 戳我 \(Description\) 给一张\(n\)割点\(m\)条边的\(DAG\),保证点\(1\)不存在入边,现在需要在\(DAG\)中加入一条不在原图中的边\((x,y)\),求这 ...
- HNOI 2015 【亚瑟王】
看着洛谷里那一排任务计划,瑟瑟发抖...... 题目大意: 你有n张牌,每一张牌有一个发动的概率和造成的伤害值,游戏一共有r轮.对于每一轮游戏,你只能发动一张牌(在之前回合发动过的牌会被跳过,不予考虑 ...
- LOJ#3054. 「HNOI 2019」鱼
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...
- 「HNOI2015」亚瑟王
传送门 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟 ...
- 「HNOI 2019」白兔之舞
一道清真的数论题 LOJ #3058 Luogu P5293 题解 考虑$ n=1$的时候怎么做 设$ s$为转移的方案数 设答案多项式为$\sum\limits_{i=0}^L (sx)^i\bin ...
- 「HNOI 2016」 序列
\(Description\) 给你一个序列,每次询问一个区间,求其所有子区间的最小值之和 \(Solution\) 这里要用莫队算法 首先令\(val\)数组为原序列 我们考虑怎么由一个区间\([l ...
- 「HNOI 2014」 江南乐
\(Description\) \(n\)堆石子,每堆石子有\(s_i\)个,两个人轮流操作,每次可以将一对不少于\(F\)的石子尽量平均分成\(m\)堆,\(m\)每次自选,不能操作者输.共有\(T ...
随机推荐
- C++Primer笔记-----day03
==============================================================day03================================= ...
- Hash表从了解到深入(浅谈)
· Hasn表,将一个数据进行Value化,再进行一个映射关系到Key直接进行访问的一个数据结构,这样可以通过直接的计算进行数据的访问和插入.关于Hash表的基本概念这里就不一一叙述,可以通过百度了解 ...
- SpringMVC 配置多个dispatcher 及WebApplicationInitializer的使用
SpringMVC 在配置多个dispatcher时,一般可以如下配置: <!-- spring mvc start --> <servlet> <servlet-nam ...
- java 多线程下载文件 以及URLConnection和HttpURLConnection的区别
使用 HttpURLConnection 实现多线程下载文件 注意GET大写//http public class MultiThreadDownload { public static void m ...
- Hadoop2.2.0安装配置手册
第一部分 Hadoop 2.2 下载 Hadoop我们从Apache官方网站直接下载最新版本Hadoop2.2.官方目前是提供了linux32位系统可执行文件,所以如果需要在64位系统上部署则需要单独 ...
- c# ftp 判断目录是否存在和创建文件夹
工作中项目一直使用的ftp上传日志文件出现了问题,新的服务器搭建好后,日志无法上传.正好来学习一下ftp. 程序中的流程是,一个计时器,每分钟检测配置文件中本地日志文件路径下有没有日志文件,如果有就上 ...
- cactiez中文版10.1配置监控系统安装笔记
1.安装虚拟机vmware_player2.创建虚拟机,设置桥接模式,内存4g,磁盘大小50G3.启动虚拟机,安装系统4.系统root 默认密码 CactiEZ5.配置网络静态IP,修改IP,网关等信 ...
- [C++] const inside class VS const outside class
const inside class VS const outside class 类内:类内的const和c语言一样,可以通过指针间接修改const变量的值,读内存,一开始必须初始化 类外:虽然可以 ...
- if-return 语句
if(A > B): return A+1 return A-1 or if(A > B): return A+1 else: return A-1 +++++++++++++++++++ ...
- [SoapUI] 设置Excel的第一行为自动过滤
import org.apache.poi.ss.util.* XSSFWorkbook workbook = new XSSFWorkbook() XSSFSheet sheet = workboo ...