---恢复内容开始---

【题目大意】

有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有a*a分,comb就是极大的连续o。求期望分数。

【思路】

比之前的OSU!简单好多的OSU。

设f[i]为期望分数,g[i]为期望末尾combo的长度。

①s[i]='x',f[i]=f[i-1],g[i]=0;

②s[i]='o',f[i]=f[i-1]+(g[i-1]+1)^2-g[i-1]^2=f[i-1]+2*g[i-1]+1,g[i]=g[i-1]+1

③s[i]='?',①*50%+②*50%

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=+;
int n;
char s[MAXN];
double f[MAXN],g[MAXN]; int main()
{
scanf("%d",&n);
scanf("%s",s+);
f[]=g[]=;
for (int i=;i<=n;i++)
{
if (s[i]=='x') f[i]=f[i-],g[i]=;
if (s[i]=='o') f[i]=f[i-]+*g[i-]+,g[i]=g[i-]+;
if (s[i]=='?') f[i]=f[i-]+g[i-]+0.5,g[i]=(g[i-]+)/;
}
printf("%.4lf",f[n]);
return ;
}

【期望DP】BZOJ3450- Tyvj1952 Easy的更多相关文章

  1. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  2. Bzoj3450 Tyvj1952 Easy

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 570  Solved: 428[Submit][Status][Discuss] Descriptio ...

  3. [bzoj3450]Tyvj1952 Easy[概率dp]

    和之前一样考虑这个音符时x还是o,如果是x,是否是新的连续一段,对答案的贡献是多少$(a^2-{(a-1)}^2)$,然后递推就可以了. #include <bits/stdc++.h> ...

  4. 【BZOJ3450】Tyvj1952 Easy 期望DP

    [BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...

  5. 【BZOJ3450】Easy [期望DP]

    Easy Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~ ...

  6. bzoj3450 Easy(概率期望dp)

    3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 876  Solved: 648[Submit][Status] ...

  7. 2018.08.30 Tyvj1952 Easy(期望dp)

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...

  8. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  9. 【BZOJ-3450】Tyvj1952Easy 概率与期望DP

    3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 468  Solved: 353[Submit][Status] ...

随机推荐

  1. 【洛谷 P3227】 [HNOI2013]切糕(最小割)

    题目链接 每层每个位置向下一层这个位置连边,流量为下一层这个位置的\(f\),源点向第一层连,流量第一层每个位置的费用,最后一层向汇点连,流量\(INF\). 这样就得到了\(P*Q\)条链,不考虑\ ...

  2. python-cookbook读书笔记

    今天开始读<python-cookbook>,书里有许多python优雅的写法,可以作为python的一本进阶书. 感谢译者.项目地址: https://github.com/yidao6 ...

  3. ES6基础知识汇总

    1.如何理解ECMAScript6? ECMAScript是什么,ECMASCript的作用 2.新增let关键字 let的用途 3.关键字const const作用,传址赋值 4.解构赋值 解构赋值 ...

  4. Django之ModelForm(二)-----ModelForm组件

    a.  class Meta:             model,                           # 对应Model的             fields=None,     ...

  5. go 数据变量和操作符

    数据类型 布尔类型 a. var b bool 和 var b bool = true 和 var b = falseb. 操作符 == 和 !=c. 取反操作符: !bd. && 和 ...

  6. SSO单点登录的发展由来以及实现原理【转】

    单点登录以及权限,在很早之前都有写过,不过都比较简单,今天就具体说一下,以及下一步要做的 1.web单系统应用 早期我们开发web应用都是所有的包放在一起打成一个war包放入tomcat容器来运行的, ...

  7. WebHeaderCollection类

    .net添加http报头 string[] allKeys = WebHeaderCollection.AllKeys; for (int i = 0; i < allKeys.Length; ...

  8. HDU 6198 2017沈阳网络赛 线形递推

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6198 题意:给出一个数k,问用k个斐波那契数相加,得不到的数最小是几. 解法:先暴力打表看看有没有规律 ...

  9. caffe Python API 之Solver定义

    from caffe.proto import caffe_pb2 s = caffe_pb2.SolverParameter() path='/home/xxx/data/' solver_file ...

  10. 第一天开始使用Oracle

    上半年虽然已经学习了Oracle,但是基本上实验课都没怎么实践过,感觉自己之前过得太水了! 在我的印象里,Oracle 的难度相当于工程师的建设一个亚洲最大的医院一样,也如医生的99%失败率的手术: ...