hive on spark配置
1、安装java、maven、scala、hadoop、mysql、hive
略
2、编译spark
./make-distribution.sh --name "hadoop2-without-hive" --tgz "-Pyarn,hadoop-2.6,parquet-provided"
3、安装spark
tar -zxvf spark-1.6.0-bin-hadoop2-without-hive.tgz -C /opt/cdh5/
4、配置spark
:spark-env.sh
export JAVA_HOME=/opt/service/jdk1.8.0_151
export SCALA_HOME=/opt/service/scala-2.10.5
export HADOOP_HOME=/opt/cdh5/hadoop-2.6.0-cdh5.10.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HIVE_CONF_DIR=/opt/cdh5/hive-2.1.0/conf
export SPARK_WORKER_CORES=4
export SPARK_WORKER_INSTANCES=4
export SPARK_WORKER_MEMORY=1g
export SPARK_DRIVER_MEMORY=1g
export SPARK_MASTER_IP=chavin.king
export SPARK_LIBRARY_PATH=/opt/cdh5/spark-1.6.0-bin-hadoop2-without-hive/lib
export SPARK_MASTER_WEBUI_PORT=8080
export SPARK_WORKER_WEBUI_PORT=8081
export SPARK_WORKER_DIR=/opt/cdh5/spark-1.6.0-bin-hadoop2-without-hive/work
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_PORT=7078
export SPARK_LOG_DIR=/opt/cdh5/spark-1.6.0-bin-hadoop2-without-hive/log
:spark-default.xml
#spark.master yarn
spark.master spark://chavin.king:7077
spark.home /opt/cdh5/spark-1.6.0-bin-hadoop2-without-hive
spark.eventLog.enabled true
spark.eventLog.dir hdfs://chavin.king:8020/spark-log
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.executor.memory 1g
spark.driver.memory 1g
spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"
:slaves
chavin.king
5、配置yarn
:yarn-site.xml
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>
6、配置hive
<property>
<name>hive.execution.engine</name>
<value>spark</value>
</property>
<property>
<name>hive.enable.spark.execution.engine</name>
<value>true</value>
</property>
<property>
<name>spark.home</name>
<value>/opt/cdh5/spark-1.6.0-bin-hadoop2-without-hive</value>
</property>
<property>
<name>spark.master</name>
<value>spark://chavin.king:7077</value>
</property>
<property>
<name>spark.enentLog.enabled</name>
<value>true</value>
</property>
<property>
<name>spark.enentLog.dir</name>
<value>hdfs://chavin.king:8020/spark-log</value>
</property>
<property>
<name>spark.serializer</name>
<value>org.apache.spark.serializer.KryoSerializer</value>
</property>
<property>
<name>spark.executor.memeory</name>
<value>1g</value>
</property>
<property>
<name>spark.driver.memeory</name>
<value>1g</value>
</property>
<property>
<name>spark.executor.extraJavaOptions</name>
<value>-XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"</value>
</property>
7、为hive添加spark jar包:
cp /opt/software/spark-1.6.0/core/target/spark-core_2.10-1.6.0.jar /opt/cdh5/hive-2.1.0/lib/
ln -s /opt/cdh5/spark-1.6.0-bin-hadoop2-without-hive/lib/spark-assembly-1.6.0-hadoop2.6.0.jar /opt/cdh5/hive-2.1.0/lib/
bin/hdfs dfs -put /opt/cdh5/spark-1.6.0-bin-hadoop2-without-hive/lib/spark-assembly-1.6.0-hadoop2.6.0.jar hdfs://chavin.king:8020/spark-assembly-1.6.0-hadoop2.6.0.jar
在hive-site.xml中添加:
<property>
<name>spark.yarn.jar</name>
<value>hdfs://chavin.king:8020/spark-assembly-1.6.0-hadoop2.6.0.jar</value>
</property>
8、验证hive on spark是否成功配置
$ bin/hive
which: no hbase in (/opt/cdh5/spark-1.6.0-bin-hadoop2-without-hive/bin:/opt/service/maven-3.3.3/bin:/opt/service/scala-2.10.5/bin:/opt/service/jdk1.8.0_151/bin:/opt/service/jdk1.8.0_151/jre/bin:/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/hadoop/.local/bin:/home/hadoop/bin)
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/opt/cdh5/hive-2.1.0/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/opt/cdh5/spark-1.6.0-bin-hadoop2-without-hive/lib/spark-assembly-1.6.0-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/opt/cdh5/hadoop-2.6.0-cdh5.10.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Logging initialized using configuration in file:/opt/cdh5/hive-2.1.0/conf/hive-log4j2.properties Async: true
hive (default)> show tables ;
OK
tab_name
t1
Time taken: 0.966 seconds, Fetched: 1 row(s)
hive (default)> select count(*) from t1;
Query ID = hadoop_20171204024017_cda99c42-21eb-480f-9d2a-e0dbb18a9b63
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Spark Job = e8b4ccc6-2dfa-43b9-99cc-7a066e2c0a0f
Query Hive on Spark job[0] stages:
0
1
Status: Running (Hive on Spark job[0])
Job Progress Format
CurrentTime StageId_StageAttemptId: SucceededTasksCount(+RunningTasksCount-FailedTasksCount)/TotalTasksCount [StageCost]
2017-12-04 02:40:32,861 Stage-0_0: 0/1 Stage-1_0: 0/1
... ...
2017-12-04 02:44:11,388 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2017-12-04 02:44:50,826 Stage-0_0: 1/1 Finished Stage-1_0: 1/1 Finished
Status: Finished successfully in 268.11 seconds
OK
c0
3
Time taken: 338.493 seconds, Fetched: 1 row(s)
hive (default)> exit;
hive on spark配置的更多相关文章
- spark 2.0.0集群安装与hive on spark配置
1. 环境准备: JDK1.8 hive 2.3.4 hadoop 2.7.3 hbase 1.3.3 scala 2.11.12 mysql5.7 2. 下载spark2.0.0 cd /home/ ...
- Hive on Spark安装配置详解(都是坑啊)
个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Sp ...
- 大数据学习系列之九---- Hive整合Spark和HBase以及相关测试
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为h ...
- Hive记录-Hive on Spark环境部署
1.hive执行引擎 Hive默认使用MapReduce作为执行引擎,即Hive on mr.实际上,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hive on ...
- hive on spark:return code 30041 Failed to create Spark client for Spark session原因分析及解决方案探寻
最近在Hive中使用Spark引擎进行执行时(set hive.execution.engine=spark),经常遇到return code 30041的报错,为了深入探究其原因,阅读了官方issu ...
- Hive on Spark和Spark sql on Hive,你能分的清楚么
摘要:结构上Hive On Spark和SparkSQL都是一个翻译层,把一个SQL翻译成分布式可执行的Spark程序. 本文分享自华为云社区<Hive on Spark和Spark sql o ...
- 基于CDH 5.9.1 搭建 Hive on Spark 及相关配置和调优
Hive默认使用的计算框架是MapReduce,在我们使用Hive的时候通过写SQL语句,Hive会自动将SQL语句转化成MapReduce作业去执行,但是MapReduce的执行速度远差与Spark ...
- CM记录-配置Hive on Spark
默认hive on spark是禁用的,需要在Cloudera Manager中启用.1.登录CM界面,打开hive服务.2.单击 配置标签,查找enable hive on spark属性.3.勾选 ...
- Mac OSX系统中Hadoop / Hive 与 spark 的安装与配置 环境搭建 记录
Mac OSX系统中Hadoop / Hive 与 spark 的安装与配置 环境搭建 记录 Hadoop 2.6 的安装与配置(伪分布式) 下载并解压缩 配置 .bash_profile : ...
随机推荐
- Redis 学习之路 (011) - redis 多数据库
一台服务器上都快开启200个redis实例了,看着就崩溃了.这么做无非就是想让不同类型的数据属于不同的应用程序而彼此分开. 那么,redis有没有什么方法使不同的应用程序数据彼此分开同时又存储在相同的 ...
- Effective Java 第三版—— 85. 其他替代方式优于Java本身序列化
Tips 书中的源代码地址:https://github.com/jbloch/effective-java-3e-source-code 注意,书中的有些代码里方法是基于Java 9 API中的,所 ...
- VMware下centOS yum报错cannot find a valid baseurl or repo:base 解决方法
*无法联网的明显表现会有: 1.yum install出现 Error: cannot find a valid baseurl or repo:base 2.ping host会提示unknown ...
- docker 命令集
1.提交本地镜像到远程cd to dockerfile directorysudo docker build -t orange5 ./sudo docker psdocker tag 1adec2c ...
- React Router教程
React Router教程 React项目的可用的路由库是React-Router,当然这也是官方支持的.它也分为: react-router 核心组件 react-router-dom 应用于浏览 ...
- 【iCore4 双核心板_uC/OS-II】例程一:认识 uC/OS-II
一.实验说明: 本例程移值入uC/OS-II,建立三个任务,红色和绿色LED分别以固定频率闪烁,并且打开串口工具, 输出浮点数据. 二.源代码下载链接: 链接:https://pan.baidu.co ...
- Unix时间转LInux时间
private static long getTime() { long currentTimeMillis = System.currentTimeMillis(); long nanoTime = ...
- 【转载】Docker 安装后 报 Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running? 解决办法
Docker Docker 安装后 报 Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docke ...
- npm安装package.json中的模块依赖
npm 一键安装 package.json里的依赖时有2种情况: 1.package.json不存在时 运行命令: npm init可自动创建package.json文件 2.package.json ...
- python -- ajax数组传递和后台接收
phper转pythoner 在当初使用php做网站开发的时候,前端ajax传递数据的时候,就是直接将一个数组传递过去,后台用$_POST['key']接收即可,没有考虑那么细,想来这不都是理所当然的 ...