环境变量 含义
SPARK_MASTER_IP master实例绑定的IP地址,例如,绑定到一个公网IP
SPARK_MASTER_PORT mater实例绑定的端口(默认7077)
SPARK_MASTER_WEBUI_PORT master web UI的端口(默认8080)
SPARK_MASTER_OPTS master专用配置属性,格式如”-Dx=y” (默认空),可能的选项请参考下面的列表。
SPARK_LOCAL_DIRS Spark的本地工作目录,包括:映射输出的临时文件和RDD保存到磁盘上的临时数据。这个目录需要快速访问,最好设成本地磁盘上的目录。也可以通过使用逗号分隔列表,将其设成多个磁盘上的不同路径。
SPARK_WORKER_CORES 本机上Spark应用可以使用的CPU core上限(默认所有CPU core)
SPARK_WORKER_MEMORY 本机上Spark应用可以使用的内存上限,如:1000m,2g(默认为本机所有内存减去1GB);注意每个应用单独使用的内存大小要用 spark.executor.memory 属性配置的。
SPARK_WORKER_PORT Spark worker绑定的端口(默认随机)
SPARK_WORKER_WEBUI_PORT worker web UI端口(默认8081)
SPARK_WORKER_INSTANCES 每个slave机器上启动的worker实例个数(默认:1)。如果你的slave机器非常强劲,可以把这个值设为大于1;相应的,你需要设置SPARK_WORKER_CORES参数来显式地限制每个worker实例使用的CPU个数,否则每个worker实例都会使用所有的CPU。
SPARK_WORKER_DIR Spark worker的工作目录,包括worker的日志以及临时存储空间(默认:${SPARK_HOME}/work)
SPARK_WORKER_OPTS worker的专用配置属性,格式为:”-Dx=y”,可能的选项请参考下面的列表。
SPARK_DAEMON_MEMORY Spark master和worker后台进程所使用的内存(默认:1g)
SPARK_DAEMON_JAVA_OPTS Spark master和workers后台进程所使用的JVM选项,格式为:”-Dx=y”(默认空)
SPARK_PUBLIC_DNS Spark master和workers使用的公共DNS(默认空)

注意: 启动脚本目前不支持Windows。如需在Windows上运行,请手工启动master和workers。

SPARK_MASTER_OPTS支持以下属性:

属性名 默认值 含义
spark.deploy.retainedApplications 200 web UI上最多展示几个已结束应用。更早的应用的数将被删除。
spark.deploy.retainedDrivers 200 web UI上最多展示几个已结束的驱动器。更早的驱动器进程数据将被删除。
spark.deploy.spreadOut true 独立部署集群的master是否应该尽可能将应用分布到更多的节点上;设为true,对数据本地性支持较好;设为false,计算会收缩到少数几台机器上,这对计算密集型任务比较有利。
spark.deploy.defaultCores (无限制) Spark独立模式下应用程序默认使用的CPU个数(没有设置spark.cores.max的情况下)。如果不设置,则为所有可用CPU个数(除非设置了spark.cores.max)。如果集群是共享的,最好将此值设小一些,以避免用户占满整个集群。
spark.worker.timeout 60 如果master没有收到worker的心跳,那么将在这么多秒之后,master将丢弃该worker。

SPARK_WORKER_OPTS支持以下属性:

属性名 默认值 含义
spark.worker.cleanup.enabled false 是否定期清理 worker 和应用的工作目录。注意,该设置仅在独立模式下有效,YARN有自己的清理方式;同时,只会清理已经结束的应用对应的目录。
spark.worker.cleanup.interval 1800 (30 minutes) worker清理本地应用工作目录的时间间隔(秒)
spark.worker.cleanup.appDataTtl 7 * 24 * 3600 (7 days) 清理多久以前的应用的工作目录。这个选项值将取决于你的磁盘总量。spark应用会将日志和jar包都放在其对应的工作目录下。随着时间流逝,应用的工作目录很快会占满磁盘,尤其是在你的应用提交比较频繁的情况下。

Spark记录-spark-env.sh配置的更多相关文章

  1. Spark记录-官网学习配置篇(二)

    ### Spark SQL Running the SET -v command will show the entire list of the SQL configuration. #scala/ ...

  2. Spark记录-官网学习配置篇(一)

    参考http://spark.apache.org/docs/latest/configuration.html Spark提供三个位置来配置系统: Spark属性控制大多数应用程序参数,可以使用Sp ...

  3. Spark记录-Spark性能优化解决方案

    Spark性能优化的10大问题及其解决方案 问题1:reduce task数目不合适解决方式:需根据实际情况调节默认配置,调整方式是修改参数spark.default.parallelism.通常,r ...

  4. Spark记录-Spark On YARN内存分配(转载)

    Spark On YARN内存分配(转载) 说明 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client模式.yarn-cluster模式. ...

  5. Spark记录-spark编程介绍

    Spark核心编程 Spark 核心是整个项目的基础.它提供了分布式任务调度,调度和基本的 I/O 功能.Spark 使用一种称为RDD(弹性分布式数据集)一个专门的基础数据结构,是整个机器分区数据的 ...

  6. Spark记录-spark报错Unable to load native-hadoop library for your platform

    解决方案一: #cp $HADOOP_HOME/lib/native/libhadoop.so  $JAVA_HOME/jre/lib/amd64 #源码编译snappy---./configure  ...

  7. Spark记录-spark介绍

    Apache Spark是一个集群计算设计的快速计算.它是建立在Hadoop MapReduce之上,它扩展了 MapReduce 模式,有效地使用更多类型的计算,其中包括交互式查询和流处理.这是一个 ...

  8. Spark记录-Spark on mesos配置

    1.安装mesos #用centos6的源yum安装 # rpm -Uvh http://repos.mesosphere.io/el/6/noarch/RPMS/mesosphere-el-repo ...

  9. Spark记录-Spark on Yarn框架

    一.客户端进行操作 1.根据yarnConf来初始化yarnClient,并启动yarnClient2.创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否 ...

  10. Spark记录-Spark作业调试

    在本地IDE里直接运行spark程序操作远程集群 一般运行spark作业的方式有两种: 本机调试,通过设置master为local模式运行spark作业,这种方式一般用于调试,不用连接远程集群. 集群 ...

随机推荐

  1. 用async/ await来发送异步

    昨天看了一篇vue的教程,作者用async/ await来发送异步请求,从服务端获取数据,代码很简洁,同时async/await 已经被标准化,是时候学习一下了. 先说一下async的用法,它作为一个 ...

  2. pip和conda到底有什么不一样?

    今天看到我的foreman开始报错去询问才发现.我们的python包管理工具已经从pip整体迁移到了conda..最近的迁移真的非常多..前端也在迁移打包

  3. Delphi中统一显示表格字段名的高效方法

    问题描述:在开发数据库程序时,我们经常要使用很多的表格显示组件DBGrid.当DBGrid显示某表格的数据时,其字段标题默认的就是后台数据库中的表格的字段名称.而为了数据库开发方便,后台数据库中的表格 ...

  4. python---random模块详解

    在python中用于生成随机数的模块是random,在使用前需要import, 下面看下它的用法. random.random random.random()用于生成一个0到1的随机符点数: 0 &l ...

  5. Python面向对象静态方法,类方法,属性方法

    Python面向对象静态方法,类方法,属性方法 属性: 公有属性 (属于类,每个类一份) 普通属性 (属于对象,每个对象一份) 私有属性 (属于对象,跟普通属性相似,只是不能通过对象直接访问) 方法: ...

  6. pip download 只下载不安装命令的使用方法

    比如下载 django 1.8.11版本和simplejson 3.14.0版本的包 那么就将所需的包写入  requirement.txt 那么我的requirement.txt内容就是: djan ...

  7. day6 三级菜单

    #__author__: Administrator #__date__: 2018/7/12 china = { "shandong":{ "linyi":[ ...

  8. day5 列表

    列表 查 索引(下标),默认从0开始 切片 .count 查某个元素的出现次数 .index 根据内容找元素的对应索引位置 增加 .append() 追加在最后 .insert(index,'内容') ...

  9. 【LightOJ 1136】Division by 3(简单数学)

    BUPT2017 wintertraining(16) #5 C HDU - 1021 题意 1, 12, 123, 1234, ..., 12345678910, ... 问第a到第b个数(incl ...

  10. [luogu2280][bzoj1218][HNOI2003]激光炸弹

    题目描述 一种新型的激光炸弹,可以摧毁一个边长为R的正方形内的所有的目标.现在地图上有n(N<=10000)个目标,用整数Xi,Yi(其值在[0,5000])表示目标在地图上的位置,每个目标都有 ...