解答:

评:最小值在Q为球心时取到,体现数学对称性的美!

MT【1】终点在球面上的向量的更多相关文章

  1. python 库 Numpy 中如何求取向量范数 np.linalg.norm(求范数)(向量的第二范数为传统意义上的向量长度),(如何求取向量的单位向量)

    求取向量二范数,并求取单位向量(行向量计算) import numpy as np x=np.array([[0, 3, 4], [2, 6, 4]]) y=np.linalg.norm(x, axi ...

  2. UVA10827球面上的最大和

    题意:      最大子矩阵的加强版,就是给你一个n*n的矩阵,每个格子里面都有数字,然后我们在里面选择一个矩阵,使得矩阵中所有数字的和最大,而且这个题目说这个n*n的矩阵的最右边和最左边是相邻的,最 ...

  3. 【转载】屏幕坐标向3维坐标的转化-DXUT的CD3DArcBall类

    原文:http://blog.csdn.net/bluekitty/article/details/6070828 3D应用程序中,我们可以通过鼠标进行空间中物体的旋转和视角的变换等,而鼠标的移动是2 ...

  4. 3D数学读书笔记——向量运算及在c++上的实现

     本系列文章由birdlove1987编写.转载请注明出处.     文章链接: http://blog.csdn.net/zhurui_idea/article/details/24782661   ...

  5. 线性代数的本质与几何意义 01. 向量是什么?(3blue1brown 咪博士 图文注解版)

    向量是线性代数最基础.最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么? 向量之所以让人迷糊,是因为我们在物理.数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是 ...

  6. OpenGL 用三角形模拟生成球面

    在看OpenGL红皮书,看到生成球体这节,讲了很多,总感觉不如自己动手写一些代码来的实在,用OpenGL中三角形模拟球形生成.主要要点,模型视图变换,多边形表面环绕一致性,矩阵堆栈.先贴上代码. 虽然 ...

  7. 向量的表示及协方差矩阵 (PCA的理论基础)

    原文:http://blog.csdn.net/songzitea/article/details/18219237 引言 当面对的数据被抽象为一组向量,那么有必要研究一些向量的数学性质.而这些数学性 ...

  8. [BZOJ4311]向量(凸包+三分+线段树分治)

    可以发现答案一定在所有向量终点形成的上凸壳上,于是在上凸壳上三分即可. 对于删除操作,相当于每个向量有一个作用区间,线段树分治即可.$O(n\log^2 n)$ 同时可以发现,当询问按斜率排序后,每个 ...

  9. PCA算法详解——本质上就是投影后使得数据尽可能分散(方差最大),PCA可以被定义为数据在低维线性空间上的正交投影,这个线性空间被称为主⼦空间(principal subspace),使得投影数据的⽅差被最⼤化(Hotelling, 1933),即最大方差理论。

    PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量 ...

随机推荐

  1. LOJ558 我们的 CPU 遭到攻击 LCT

    传送门 题意:写一个数据结构,支持森林上:连边.删边.翻转点的颜色(黑白).查询以某一点为根的某棵树上所有黑色点到根的距离和.$\text{点数} \leq 10^5 , \text{操作数} \le ...

  2. DataWorks使用小结(二)——功能面板使用指南

    一.数据开发 1.任务开发 新建表 野路子可以直接新建一个任务,粘贴DDL,手动运行任务即可完成建表 正常应当是在“数据管理”->数据表管理中建表: 支持可视化建表和DDL建表(配合之前的宏,建 ...

  3. Python进阶:函数式编程(高阶函数,map,reduce,filter,sorted,返回函数,匿名函数,偏函数)...啊啊啊

    函数式编程 函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计 ...

  4. CF [2016-2017 ACM-ICPC CHINA-Final][GYM 101194 H] Great Cells

    很久以前做的一道思博题了,今天来补一补. 大致题意:在一个\(n*m\)的矩阵内填整数,数字在\([1,k]\)范围内.矩阵中某格的数为great number当且仅当与它同行同列的数字都严格比它小. ...

  5. Asp.net MVC 中Ajax的使用

    Asp.net MVC 抛弃了Asp.net WebForm那种高度封装的控件,让我们跟底层的HTML有了更多的亲近.可以更自由.更灵活的去控制HTML的结构.样式和行为.而这点对于Ajax 的应有来 ...

  6. C#编写WINNT服务,随便解决安卓开发遇到的5037被众多程序无节操占用的问题

    需求分析: 最近重新开始学习安卓开发,好久不用的ADT集成开发环境频繁遇到不能在仿真机和真机上调试的问题,也就是本人另一篇博文描述的ADB(Android Debug Bridge)监控的5037被金 ...

  7. Today

    I'm facing the major enemy. The information. I don't know when I've been crazy about seeking informa ...

  8. #个人博客作业week2——关于代码规范的个人观点

    对于这一讨论的前提我们首先要知道什么是代码规范. 在这个问题上我同意一篇参考文章的观点——代码规范不仅只编码风格.编码风格仅是代码规范的一个方面,除了编码风格,代码规范还包括函数返回值等其他方面.在我 ...

  9. 第三个spring冲刺第9天

    今天是第三阶段冲刺的最后第二天了,我们该实现的功能基本已经全部实现了,有填空的,选择题的,还有计时的,目前就是在查BUG,看看有哪些地方有BUG需要修改,以下截图是我们团队所做的功能截图: 首页: 填 ...

  10. 过滤器Filter的使用(以登录为例子)

    使用过滤器步骤: (1)在web.xml文件中添加过滤器(以下例子是过滤多个请求) <!-- 用户登录过滤 --> <filter> <filter-name>lo ...