洛谷 P3965 [TJOI2013]循环格 解题报告
P3965 [TJOI2013]循环格
题目背景
一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子。
每个元素有一个坐标(行,列),其中左上角元素坐标为\((0,0)\)。给定一个起始位\((r,c)\),你可以沿着箭头方向在格子间行走。
即:如果\((r,c)\)是一个左箭头,那么走到\((r,c-1)\);如果是一个右箭头,走到\((r,c+1)\);如果是上箭头,走到\((r-1,c)\);如果是下箭头,走到\((r+1,c)\)。
每一行和每一列都是循环的,即如果走出边界,你会出现在另一侧。比如在一个\(5*5\)的循环格里,从\((3,0)\)向左走会出现在\((3,4)\)。
题目描述
一个完美的循环格是这样定义的:对于任意一个起始位置,你都可以沿着箭头最终回到起始位置。
如果一个循环格不满足完美,你可以随意修改任意一个元素的箭头直到完美。
给定一个循环格,你需要计算最少需要修改多少个元素使其完美。
输入输出格式
输入格式:
第一行两个整数\(R\)和\(C\),表示循环格的行和列。接下来\(R\)行,每一行包含\(C\)个字符\(LRUD\)表示左右上下
输出格式:
一个整数,表示最少需要修改多少个元素使得给定的循环格完美。
说明
数据范围
\(30\%\)的数据,\(1 ≤ R, C ≤ 7\)
\(100\%\)的数据,\(1 ≤ R, C ≤ 15\)
这个是一个\(|V|=|E|\)的图,要每个点都在环上,要求每个点的入度和出度都是\(1\),然后幻视一下,感觉和最小路径覆盖有点像,拆个点放到两边,连可以到达的点,最大流量就限制了入度出度都是\(1\),然后安装原来的连边分配一下费用,跑最小费用最大流就可以了。
Code:
#include <cstdio>
#include <cstring>
const int dx[5]={0,-1,0,1,0};
const int dy[5]={0,0,1,0,-1};
const char cp[5]={'%','U','R','D','L'};
const int N=1000;
const int inf=0x3f3f3f3f;
int n,r,c,s,t;
char yuy[20];
int head[N],to[N<<3],Next[N<<3],edge[N<<3],cost[N<<3],cnt=1;
void add(int u,int v,int w,int c)
{
to[++cnt]=v,edge[cnt]=w,cost[cnt]=c,Next[cnt]=head[u],head[u]=cnt;
to[++cnt]=u,edge[cnt]=0,cost[cnt]=-c,Next[cnt]=head[v],head[v]=cnt;
}
int dis[N],q[N*N],pre[N];
bool spfa()
{
memset(dis,0x3f,sizeof dis);
int l,r;
dis[q[l=r=1]=s]=0;
while(l<=r)
{
int now=q[l++];
for(int v,i=head[now];i;i=Next[i])
if(edge[i]&&dis[v=to[i]]>dis[now]+cost[i])
{
dis[v]=dis[now]+cost[i];
pre[v]=i;
q[++r]=v;
}
}
return dis[t]!=inf;
}
int main()
{
scanf("%d%d",&r,&c);
n=r*c,s=(n<<1)+1,t=s+1;
for(int i=1;i<=r;i++)
{
scanf("%s",yuy+1);
for(int j=1;j<=c;j++)
{
int u=(i-1)*c+j;
for(int k=1;k<=4;k++)
{
int ti=i+dx[k],tj=j+dy[k];
ti=(ti+r-1)%r+1,tj=(tj+c-1)%c+1;
int v=(ti-1)*c+tj;
add(u,v+n,1,yuy[j]!=cp[k]);
}
}
}
for(int i=1;i<=n;i++) add(s,i,1,0);
for(int i=1;i<=n;i++) add(i+n,t,1,0);
int ans=0;
while(spfa())
{
ans+=dis[t];
int now=t;
while(pre[now])
{
--edge[pre[now]];
++edge[pre[now]^1];
now=to[pre[now]^1];
}
}
printf("%d\n",ans);
return 0;
}
2019.2.14
洛谷 P3965 [TJOI2013]循环格 解题报告的更多相关文章
- 洛谷 P3962 [TJOI2013]数字根 解题报告
P3962 [TJOI2013]数字根 题意 数字根:这个数字每一位的数字加起来求和,反复这个过程直到和小于10. 给出序列\(a\),询问区间\([l,r]\)连续的子区间里最大前5个不同的数字根, ...
- 洛咕 P3965 [TJOI2013]循环格
同tjoi2010 打扫房间,每个点入度,出度都为1,可以向相邻4个点连边,但只有原来存在的边费用为0. // luogu-judger-enable-o2 #include<bits/stdc ...
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- 洛谷1303 A*B Problem 解题报告
洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- 洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- 洛谷 P1879 [USACO06NOV]玉米田 解题报告
P1879 [USACO06NOV]玉米田Corn Fields 题目描述 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ M ≤ 12; 1 ≤ ...
- 洛谷 P3084 [USACO13OPEN]照片Photo 解题报告
[USACO13OPEN]照片Photo 题目描述 农夫约翰决定给站在一条线上的\(N(1 \le N \le 200,000)\)头奶牛制作一张全家福照片,\(N\)头奶牛编号\(1\)到\(N\) ...
随机推荐
- 51Nod 1299 监狱逃离
这其实是一道树形DP的神仙题. 然后开始推推推,1 hour later样例都过不了 然后仔细一看题目,貌似像一个最小割模型,然后5min想了想建图: 首先拆点,将每个点拆成进和出两个,然后连边,边权 ...
- Asp.Net MVC 获取当前 Controller Action Area
获取控制器名称: ViewContext.RouteData.Values["controller"].ToString(); 获取Action名称: ViewContext.Ro ...
- 基于Ping和Telnet/NC的监控脚本案例分析
案例一:单纯地对某些ip进行ping监控 [root@test opt]# cat /opt/hosts_ip_list 192.168.10.10 192.168.10.11 192.168.10. ...
- Visual Studio的安装与单元测试
一.Visual Studio的安装 由于上学期重装了win10系统,以前使用的vc++6.0不能够正常使用,所以直接就安装了Visual Studio 2015,安装的时候就直接按照提示的步骤进行安 ...
- M2事后总结
照片 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? "北航"Clubs旨在于解决北航校内社团管理与学生参与社团活动的困难的 ...
- 第七周 linux如何装载和启动一个可执行文件
潘恒 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.实验内容 1.预处理. ...
- Particle filter for visual tracking
Kalman Filter Cons: Kalman filtering is inadequate because it is based on the unimodal Gaussian dist ...
- boost::asio之(一)简单客户端服务器回显功能
客户端: // BoostDev.cpp: 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #inc ...
- MYSQL ROW_FORMAT=Compact
https://dev.mysql.com/doc/refman/5.6/en/innodb-row-format-antelope.html https://docs.oracle.com/cd/E ...
- eclipse repository connector