P3965 [TJOI2013]循环格

题目背景

一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子。

每个元素有一个坐标(行,列),其中左上角元素坐标为\((0,0)\)。给定一个起始位\((r,c)\),你可以沿着箭头方向在格子间行走。

即:如果\((r,c)\)是一个左箭头,那么走到\((r,c-1)\);如果是一个右箭头,走到\((r,c+1)\);如果是上箭头,走到\((r-1,c)\);如果是下箭头,走到\((r+1,c)\)。

每一行和每一列都是循环的,即如果走出边界,你会出现在另一侧。比如在一个\(5*5\)的循环格里,从\((3,0)\)向左走会出现在\((3,4)\)。

题目描述

一个完美的循环格是这样定义的:对于任意一个起始位置,你都可以沿着箭头最终回到起始位置。

如果一个循环格不满足完美,你可以随意修改任意一个元素的箭头直到完美。

给定一个循环格,你需要计算最少需要修改多少个元素使其完美。

输入输出格式

输入格式:

第一行两个整数\(R\)和\(C\),表示循环格的行和列。接下来\(R\)行,每一行包含\(C\)个字符\(LRUD\)表示左右上下

输出格式:

一个整数,表示最少需要修改多少个元素使得给定的循环格完美。

说明

数据范围

\(30\%\)的数据,\(1 ≤ R, C ≤ 7\)

\(100\%\)的数据,\(1 ≤ R, C ≤ 15\)


这个是一个\(|V|=|E|\)的图,要每个点都在环上,要求每个点的入度和出度都是\(1\),然后幻视一下,感觉和最小路径覆盖有点像,拆个点放到两边,连可以到达的点,最大流量就限制了入度出度都是\(1\),然后安装原来的连边分配一下费用,跑最小费用最大流就可以了。


Code:

#include <cstdio>
#include <cstring>
const int dx[5]={0,-1,0,1,0};
const int dy[5]={0,0,1,0,-1};
const char cp[5]={'%','U','R','D','L'};
const int N=1000;
const int inf=0x3f3f3f3f;
int n,r,c,s,t;
char yuy[20];
int head[N],to[N<<3],Next[N<<3],edge[N<<3],cost[N<<3],cnt=1;
void add(int u,int v,int w,int c)
{
to[++cnt]=v,edge[cnt]=w,cost[cnt]=c,Next[cnt]=head[u],head[u]=cnt;
to[++cnt]=u,edge[cnt]=0,cost[cnt]=-c,Next[cnt]=head[v],head[v]=cnt;
}
int dis[N],q[N*N],pre[N];
bool spfa()
{
memset(dis,0x3f,sizeof dis);
int l,r;
dis[q[l=r=1]=s]=0;
while(l<=r)
{
int now=q[l++];
for(int v,i=head[now];i;i=Next[i])
if(edge[i]&&dis[v=to[i]]>dis[now]+cost[i])
{
dis[v]=dis[now]+cost[i];
pre[v]=i;
q[++r]=v;
}
}
return dis[t]!=inf;
}
int main()
{
scanf("%d%d",&r,&c);
n=r*c,s=(n<<1)+1,t=s+1;
for(int i=1;i<=r;i++)
{
scanf("%s",yuy+1);
for(int j=1;j<=c;j++)
{
int u=(i-1)*c+j;
for(int k=1;k<=4;k++)
{
int ti=i+dx[k],tj=j+dy[k];
ti=(ti+r-1)%r+1,tj=(tj+c-1)%c+1;
int v=(ti-1)*c+tj;
add(u,v+n,1,yuy[j]!=cp[k]);
}
}
}
for(int i=1;i<=n;i++) add(s,i,1,0);
for(int i=1;i<=n;i++) add(i+n,t,1,0);
int ans=0;
while(spfa())
{
ans+=dis[t];
int now=t;
while(pre[now])
{
--edge[pre[now]];
++edge[pre[now]^1];
now=to[pre[now]^1];
}
}
printf("%d\n",ans);
return 0;
}

2019.2.14

洛谷 P3965 [TJOI2013]循环格 解题报告的更多相关文章

  1. 洛谷 P3962 [TJOI2013]数字根 解题报告

    P3962 [TJOI2013]数字根 题意 数字根:这个数字每一位的数字加起来求和,反复这个过程直到和小于10. 给出序列\(a\),询问区间\([l,r]\)连续的子区间里最大前5个不同的数字根, ...

  2. 洛咕 P3965 [TJOI2013]循环格

    同tjoi2010 打扫房间,每个点入度,出度都为1,可以向相邻4个点连边,但只有原来存在的边费用为0. // luogu-judger-enable-o2 #include<bits/stdc ...

  3. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  4. 洛谷1303 A*B Problem 解题报告

    洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...

  5. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  6. 洛谷 P3802 小魔女帕琪 解题报告

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  7. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  8. 洛谷 P1879 [USACO06NOV]玉米田 解题报告

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ M ≤ 12; 1 ≤ ...

  9. 洛谷 P3084 [USACO13OPEN]照片Photo 解题报告

    [USACO13OPEN]照片Photo 题目描述 农夫约翰决定给站在一条线上的\(N(1 \le N \le 200,000)\)头奶牛制作一张全家福照片,\(N\)头奶牛编号\(1\)到\(N\) ...

随机推荐

  1. NOIp2018停课刷题记录

    Preface 老叶说了高中停课但是初中不停的消息后我就为争取民主献出一份力量 其实就是和老师申请了下让我们HW的三个人听课结果真停了 那么还是珍惜这次机会好好提升下自己吧不然就\(AFO\)了 Li ...

  2. [Oracle][Standby][PDB]在PDB中修改参数,设置范围为 SPFILE,报 ORA-65099错误

    [Oracle][Standby][PDB]在PDB中修改参数,设置范围为 SPFILE,报 ORA-65099错误 在Data Gaurd 的 Standby (或 CDB 是 Read Only ...

  3. 洛谷 4823 [TJOI2013]拯救小矮人

    题目链接-> 噔楞 题解: 贪心 按个高+臂长排序. 个矮臂长的先走,个高臂短的后走 #include <cstdio> #include <cstring> #incl ...

  4. springboot+websocket 归纳收集

    websocket是h5后的技术,主要实现是一个长连接跟tomcat的comet技术差不多,但websocket是基于web协议的,有更广泛的支持.当然,在处理高并发的情况下,可以结合tomcat的a ...

  5. *C#(WPF)--矩阵拖动和矩阵动画(拖动展开,不足动画效果)

    最近在研发新的项目,遇到了一个桌面模式下的难点--展开动画.之前动画这方面没做过,也许很多人开始做的时候也会遇到相关问题,因此我把几个重点及实际效果图总结展示出来: 我的开发环境是在VS2017下进行 ...

  6. C# 8中的Async Streams

    关键要点 异步编程技术提供了一种提高程序响应能力的方法. Async/Await模式在C# 5中首次亮相,但只能返回单个标量值. C# 8添加了异步流(Async Streams),允许异步方法返回多 ...

  7. host大法之GitHub上不去

    dns解析慢,github上不去,慢 修改host. windows下路径为:C:\Windows\System32\drivers\etc\hosts Linux下路径:/etc/hosts 加入: ...

  8. mac下查看和设置环境变量

    1.查看环境变量 命令    env 2.修改环境变量 命令    cd ~ && ls -a && sudo vim .bashrc 编辑输入要添加的环境变量 3.s ...

  9. C. Banh-mi

    链接 [http://codeforces.com/contest/1062/problem/C] 题意 给你有n个字符(0 or 1)的串,当去某个位置时所有的剩下的位置都加上这个位置的数字,q次查 ...

  10. Echarts中graph类型的运用求教

    以下是百度Echarts官网上关系图的源码,但是这个关系图的node节点和edge都是静态文件里规定好的,我现在想动态实现,点击其中一个节点A然后新产生一个新节点B,并且有A和B之间的edge,就类似 ...