【bzoj2844】albus就是要第一个出场
Time Limit: 6 Sec Memory Limit: 128 MB
Submit: 2254 Solved: 934
[Submit][Status][Discuss]
Description
Input
第一行一个数n, 为序列A的长度。接下来一行n个数, 为序列A, 用空格隔开。最后一个数Q, 为给定的数.
Output
Sample Input
1 2 3
1
Sample Output
样例解释:
N = 3, A = [1 2 3]
S = {1, 2, 3}
2^S = {空, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
f(空) = 0
f({1}) = 1
f({2}) = 2
f({3}) = 3
f({1, 2}) = 1 xor 2 = 3
f({1, 3}) = 1 xor 3 = 2
f({2, 3}) = 2 xor 3 = 1
f({1, 2, 3}) = 0
所以
B = [0, 0, 1, 1, 2, 2, 3, 3]
HINT
数据范围:
1 <= N <= 10,0000
其他所有输入均不超过10^9
Source
题解:
问题即求子集异或和的某个数的排名;
线性基的性质:若$A,|A|=n$的线性基为$B$,$|B|=k$,则有$2^k$个不同的子集异或和,且每个会出现$2^{n-k}$次;
由基的线性无关性可以知道有且仅有$^k$个异或和互不相同;
这k个基是可以从$a_i$里选出来的,只是我们为了好写,一般插入就直接消元到某个数组里;
考虑他们的子集异或和S1,另外有$n-k$个数,可以被B中的向量唯一表示,考虑子集异或和S2 ;
S1 ^ S2 也是一种合法的选法;
这样有$^k * ^{n-k} = ^n$种 ,说明只有$^n$且按照这种方式对应;
如果你关心一个蒟蒻的不太严谨的证明的话
高斯亚当消元求出互相独立的线性基,在线性基上一个一个查找;
注意消元的两个循环(line23 line24 )有顺序;
复杂度;$ O(n log \ a_{i} + log \ a_{i}) $
20181030
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<stack>
#include<map>
#include<set>
#define Run(i,l,r) for(int i=l;i<=r;i++)
#define Don(i,l,r) for(int i=l;i>=r;i--)
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const int N= , mod=;
int n,d[],q;
void ins(int x){
for(int i=;~i;i--)if((x>>i)&){
if(!d[i]){
d[i]=x;
for(int j=;j<i;j++)if(d[j]&&((d[i]>>j)&))d[i]^=d[j];
for(int j=;j>i;j--)if((d[j]>>i)&)d[j]^=d[i];
break;
}
else x^=d[i];
}
}
int pw(int x,int y){
int re=;
while(y){
if(y&)re=re*x%mod;
y>>=;x=x*x%mod;
}
return re;
}
int query(int x){
int re=,cnt=;
for(int i=;~i;i--)if(d[i])cnt++;
int tmp=cnt;
for(int i=;~i;i--)if(d[i]){
tmp--;
if((x^d[i])<x){
x^=d[i];
re=(re+pw(,tmp))%mod;
}
}
re=re*pw(,n-cnt)%mod;
return re;
}
int main(){
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
scanf("%d",&n);
Run(i,,n){
int x;scanf("%d",&x);
ins(x);
}
int x;scanf("%d",&x);
cout<<(query(x)+)%mod<<endl;
return ;
}//by tkys_Austin;
【bzoj2844】albus就是要第一个出场的更多相关文章
- BZOJ2844: albus就是要第一个出场
Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子集构成的集合. 定义映射 f ...
- BZOJ2844: albus就是要第一个出场(线性基)
Time Limit: 6 Sec Memory Limit: 128 MBSubmit: 2054 Solved: 850[Submit][Status][Discuss] Descriptio ...
- bzoj千题计划195:bzoj2844: albus就是要第一个出场
http://www.lydsy.com/JudgeOnline/problem.php?id=2844 题意:给定 n个数,把它的所有子集(可以为空)的异或值从小到大排序得到序列 B,请问 Q 在 ...
- 【贪心】【线性基】bzoj2844 albus就是要第一个出场
引用题解:http://blog.csdn.net/PoPoQQQ/article/details/39829237 注意评论区. #include<cstdio> using names ...
- 【线性基】bzoj2844: albus就是要第一个出场
线性基求可重rank 题目描述 给定 n 个数 $\{ a_i \}$ ,以及数 $x$. 将 $\{ a_i \}$ 的所有子集(包括空集)的异或值从小到大排序,得到 $\{ b_i \} $. ...
- CF895C: Square Subsets && 【BZOJ2844】albus就是要第一个出场
CF895C: Square Subsets && [BZOJ2844]albus就是要第一个出场 这两道题很类似,都是线性基的计数问题,解题的核心思想也一样. CF895C Squa ...
- 【BZOJ2844】albus就是要第一个出场 高斯消元求线性基
[BZOJ2844]albus就是要第一个出场 Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2 ...
- BZOJ 2844: albus就是要第一个出场 [高斯消元XOR 线性基]
2844: albus就是要第一个出场 题意:给定一个n个数的集合S和一个数x,求x在S的$2^n$个子集从小到大的异或和序列中最早出现的位置 一开始看错题了...人家要求的是x第一次出现位置不是第x ...
- BZOJ 2844: albus就是要第一个出场
2844: albus就是要第一个出场 Time Limit: 6 Sec Memory Limit: 128 MBSubmit: 1134 Solved: 481[Submit][Status] ...
- 2844: albus就是要第一个出场
2844: albus就是要第一个出场 链接 分析: 和HDU3949差不多互逆,这里需要加上相同的数. 结论:所有数任意异或,构成的数出现一样的次数,次数为$2^{n-cnt}$,cnt为线性基的大 ...
随机推荐
- 180730-Spring之RequestBody的使用姿势小结
Spring之RequestBody的使用姿势小结 SpringMVC中处理请求参数有好几种不同的方式,如我们常见的下面几种 根据 HttpServletRequest 对象获取 根据 @PathVa ...
- 【Java】 秒转时分秒天
总有时候会有些需求, 需要用到秒, 比如 JedisCluster 设置过期时间 现在有一个需求是 : 查询接口的缓存设置有效期为:1天+随机时间 基本可以按以下来做: package com.lwc ...
- Phaser3游戏三角学应用--一只跟随屏幕点击位置游动的鱼
fish fish 资源图: fish-136x80.png undersea-bg.png 代码 var config = { type: Phaser.AUTO, parent: 'iFiero' ...
- header field token is not allowed by Access-Control-Allow-Headers in preflight response问题解决
今天下午,本来打算使用aioxs在header里传一个token给后台服务器,如下图所示: 结果,控制台报了如下的错: 然后,我不停地百度,不停的改后台express的header设置,一直没有效果: ...
- 【Python入门学习】闭包&装饰器&开放封闭原则
1. 介绍闭包 闭包:如果在一个内部函数里,对在外部作用域的变量(不是全局作用域)进行引用,那边内部函数被称为闭包(closure) 例如:如果在一个内部函数里:func2()就是内部函数, 对在外部 ...
- PCAP文件格式分析(做抓包软件之必备)
转载源:http://blog.csdn.net/anzijin/article/details/2008333 http://www.ebnd.cn/2009/09/07/file-format-a ...
- 将Python文件打包为exe文件,并在控制台运行之简易教程
第一步 在线安装 pyinstaller. 方法:打开win+ R,输入cmd,在命令行输入"pip install pyinstaller" 静等几分钟后即可安装成功. ...
- Java:有关自定数组的学习
Java:有关==自定数组==的学习 在 ==<Java程序设计与数据结构教程>== 里我在==P212~P213==页看到一个GradeRange的程序,它用的数组是自定设定的Grade ...
- 做更好的自己 ——读《我是IT小小鸟》有感
转眼间大一已经过了一大半了,到了大学,才发现初高中时父母所说的“到了大学你就轻松了···”都是骗人的.但我脑海里却一直被这个观点所支配,以至于我在大一上学期里无所事事,不知道干些什么.学习也没重视,分 ...
- 阅读笔记《我是一只IT小小鸟》
我是一只IT小小鸟 我们在尝试新的事物的时候,总是会遇到各种各样的困难,不同的人会在碰壁不同的次数之后退出.用程序员喜欢的话来说就是,我们都在for循环,区别在于你是什么情况下break;的.有的人退 ...