因为我们要学习的是特征的表达,那么关于特征,或者说关于这个层级特征,我们需要了解地更深入点。所以在说Deep Learning之前,我们有必要再啰嗦下特征(呵呵,实际上是看到那么好的对特征的解释,不放在这里有点可惜,所以就塞到这了)。

四、关于特征

特征是机器学习系统的原材料,对最终模型的影响是毋庸置疑的。如果数据被很好的表达成了特征,通常线性模型就能达到满意的精度。那对于特征,我们需要考虑什么呢?

4.1、特征表示的粒度

学习算法在一个什么粒度上的特征表示,才有能发挥作用?就一个图片来说,像素级的特征根本没有价值。例如下面的摩托车,从像素级别,根本得不到任何信息, 其无法进行摩托车和非摩托车的区分。而如果特征是一个具有结构性(或者说有含义)的时候,比如是否具有车把手(handle),是否具有车轮 (wheel),就很容易把摩托车和非摩托车区分,学习算法才能发挥作用。

4.2、初级(浅层)特征表示

既然像素级的特征表示方法没有作用,那怎样的表示才有用呢?

1995 年前后,Bruno Olshausen和 David Field 两位学者任职 Cornell University,他们试图同时用生理学和计算机的手段,双管齐下,研究视觉问题。

他们收集了很多黑白风景照片,从这些照片中,提取出400个小碎片,每个照片碎片的尺寸均为 16x16 像素,不妨把这400个碎片标记为 S[i], i = 0,.. 399。接下来,再从这些黑白风景照片中,随机提取另一个碎片,尺寸也是 16x16 像素,不妨把这个碎片标记为 T。

他们提出的问题是,如何从这400个碎片中,选取一组碎片,S[k], 通过叠加的办法,合成出一个新的碎片,而这个新的碎片,应当与随机选择的目标碎片 T,尽可能相似,同时,S[k] 的数量尽可能少。用数学的语言来描述,就是:

Sum_k (a[k] * S[k]) --> T,     其中 a[k] 是在叠加碎片 S[k] 时的权重系数。

为解决这个问题,Bruno Olshausen和 David Field 发明了一个算法,稀疏编码(Sparse Coding)。

稀疏编码是一个重复迭代的过程,每次迭代分两步:

1)选择一组 S[k],然后调整 a[k],使得Sum_k (a[k] * S[k]) 最接近 T。

2)固定住 a[k],在 400 个碎片中,选择其它更合适的碎片S’[k],替代原先的 S[k],使得Sum_k (a[k] * S’[k]) 最接近 T。

经过几次迭代后,最佳的 S[k] 组合,被遴选出来了。令人惊奇的是,被选中的 S[k],基本上都是照片上不同物体的边缘线,这些线段形状相似,区别在于方向。

Bruno Olshausen和 David Field 的算法结果,与 David Hubel 和Torsten Wiesel 的生理发现,不谋而合!

也就是说,复杂图形,往往由一些基本结构组成。比如下图:一个图可以通过用64种正交的edges(可以理解成正交的基本结构)来线性表示。比如样例的x 可以用1-64个edges中的三个按照0.8,0.3,0.5的权重调和而成。而其他基本edge没有贡献,因此均为0 。

另外,大牛们还发现,不仅图像存在这个规律,声音也存在。他们从未标注的声音中发现了20种基本的声音结构,其余的声音可以由这20种基本结构合成。

 

4.3、结构性特征表示

小块的图形可以由基本edge构成,更结构化,更复杂的,具有概念性的图形如何表示呢?这就需要更高层次的特征表示,比如V2,V4。因此V1看像素级是 像素级。V2看V1是像素级,这个是层次递进的,高层表达由底层表达的组合而成。专业点说就是基basis。V1取提出的basis是边缘,然后V2层是 V1层这些basis的组合,这时候V2区得到的又是高一层的basis。即上一层的basis组合的结果,上上层又是上一层的组合basis……(所以 有大牛说Deep learning就是“搞基”,因为难听,所以美其名曰Deep learning或者Unsupervised Feature Learning)

直观上说,就是找到make sense的小patch再将其进行combine,就得到了上一层的feature,递归地向上learning feature。

在不同object上做training是,所得的edge basis 是非常相似的,但object parts和models 就会completely different了(那咱们分辨car或者face是不是容易多了):

从文本来说,一个doc表示什么意思?我们描述一件事情,用什么来表示比较合适?用一个一个字嘛,我看不是,字就是像素级别了,起码应该是term,换句 话说每个doc都由term构成,但这样表示概念的能力就够了嘛,可能也不够,需要再上一步,达到topic级,有了topic,再到doc就合理。但每 个层次的数量差距很大,比如doc表示的概念->topic(千-万量级)->term(10万量级)->word(百万量级)。

一个人在看一个doc的时候,眼睛看到的是word,由这些word在大脑里自动切词形成term,在按照概念组织的方式,先验的学习,得到topic,然后再进行高层次的learning。

4.4、需要有多少个特征?

我们知道需要层次的特征构建,由浅入深,但每一层该有多少个特征呢?

任何一种方法,特征越多,给出的参考信息就越多,准确性会得到提升。但特征多意味着计算复杂,探索的空间大,可以用来训练的数据在每个特征上就会稀疏,都会带来各种问题,并不一定特征越多越好。

好了,到了这一步,终于可以聊到Deep learning了。上面我们聊到为什么会有Deep learning(让机器自动学习良好的特征,而免去人工选取过程。还有参考人的分层视觉处理系统),我们得到一个结论就是Deep learning需要多层来获得更抽象的特征表达。那么多少层才合适呢?用什么架构来建模呢?怎么进行非监督训练呢?

【转】Deep Learning(深度学习)学习笔记整理系列之(二)的更多相关文章

  1. Deep Learning(深度学习)学习笔记整理系列之(五)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  2. Deep Learning(深度学习)学习笔记整理系列之(八)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  3. Deep Learning(深度学习)学习笔记整理系列之(七)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  4. Deep Learning(深度学习)学习笔记整理系列之(六)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  5. Deep Learning(深度学习)学习笔记整理系列之(四)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  6. Deep Learning(深度学习)学习笔记整理系列之(三)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  7. Deep Learning(深度学习)学习笔记整理系列之(二)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  8. Deep Learning(深度学习)学习笔记整理系列之(一)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  2013-0 ...

  9. Deep Learning(深度学习)学习笔记整理系列之(一)(转)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  2013-0 ...

  10. 【转】Deep Learning(深度学习)学习笔记整理系列之(一)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  2013-0 ...

随机推荐

  1. Java 应用程序设计规范

    1.能在程序中取的产生就从程序中取.不用客户输入(减少客户输入). 比如客户号 信息 等. 2.如果有参数输入尽可能减少参数输入的个数(4个->0个): 3.验证入参(尽可能的实现输入参数的正确 ...

  2. Visual Studio使用技巧,创建自己的代码片段

    1.代码片段的使用示例 在编写代码中常会使用代码片段来提高我们的编写代码的效率,如:在Visual Studio中编写一个 for(int i = 0; i < length;i++) { } ...

  3. BaiduMap 鼠标绘制矩形选框四个顶角坐标的获取

    雪影工作室版权全部.转载请注明[http://blog.csdn.net/lina791211] 1.博文产生原因 在使用百度Map开放API进行开发的时候,遇到了一个需求,非常easy的一个需求. ...

  4. Linux上运行Jmeter

    上传jmeter到Linux服务器 unzip解压 配置环境变量vi /etc/profile: export PATH=/tmp/apache-jmeter-3.0/bin/:$PATH 刷新环境变 ...

  5. 查看系统资源使用情况:vmstat

    vmstat命令可以动态地查看系统资源的使用情况,如内存/交换分区/CPU的使用情况,通过使用该命令可以判断系统的瓶颈在哪里: [root@localhost ~]$ vmstat 1 5 # 表示每 ...

  6. CentOS6.4环境下布署LVS+keepalived笔记

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://400053.blog.51cto.com/390053/713566 环境: 1 ...

  7. HTML5 ShadowDOM & CustomElements

    Web组件由四部分组成 Template Shadow DOM (Chrome Opera支持) Custom Elements Packaging Shadow DOM 组成 Shadow DOM可 ...

  8. ReactNative For Android 框架启动核心路径剖析

    版权声明:本文由王少鸣原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/144 来源:腾云阁 https://www.qclo ...

  9. Android 系统镜像: boot.img kernel.img ramdisk.img system.img userdata.img cache.img recovery.img

    boot.img(kernel.img+ramdisk.img) ramdisk.img(/) system.img(/system) userdata.img(/data) cache.img(/c ...

  10. Servlet 工程 web.xml 中的 servlet 和 servlet-mapping 标签 《转载》

    摘录某个工程的 web.xml 文件片段: 访问顺序为1—>2—>3—>4,其中2和3的值必须相同. url-pattern 标签中的值是要在浏览器地址栏中输入的 url,可以自己命 ...