题目链接

正解:矩阵树定理+拉格朗日插值。

一下午就搞了这一道题,看鬼畜英文题解看了好久。。

首先这题出题人给了两种做法,感觉容斥+$prufer$序列+$dp$的做法细节有点多所以没看,然而这个做法似乎更难想。。

我们先构造一个函数$f(x)$,表示用一个完全图和$x-1$棵原树的边,构成的生成树的方案数。

也就是说,原树的每条边复制成$x$条,不在原树的边都变成一条边,求这个图的生成树的方案数。

然后我们可以发现,这个方案数实际上就等于$\sum_{i=0}^{n-1}x^{i}*ans_{i}$,其中$ans_{i}$表示询问的恰好有$i$条边的答案。

稍微解释一下,我们选定了原树的$i$条边,那么原树这$i$条边每条边就有$x$种选择,其他边只有$1$种选择。

然后现在我们的目标就变成了求出这个函数所表示的多项式的系数。

那么我们可以算出$x$取$[1,n]$的答案,用拉格朗日插值求出多项式,计算答案可以用矩阵树定理。

复杂度为$O(n^{4}+n^{3})$,写完题解以后发现也不是很难。。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define rhl (1000000007)
#define N (105) using namespace std; int a[N][N],g[N][N],p[N],ans[N],fac[N],ifac[N],inv[N],n,len; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return q*x;
} il int qpow(RG int a,RG int b){
RG int ans=;
while (b){
if (b&) ans=1LL*ans*a%rhl;
if (b>>=) a=1LL*a*a%rhl;
}
return ans;
} il int gauss(){
RG int res=;
for (RG int i=,id,inv;i<n;++i){
for (id=i;id<n && !a[id][i];++id); if (id>=n) return ;
if (id!=i){
for (RG int j=;j<n;++j) swap(a[i][j],a[id][j]);
res=-res;
}
res=1LL*res*a[i][i]%rhl,inv=qpow(a[i][i],rhl-);
for (RG int j=i+,tmp;j<n;++j){
if (!a[j][i]) continue;
tmp=1LL*a[j][i]*inv%rhl;
for (RG int k=i;k<n;++k)
a[j][k]=(a[j][k]-1LL*a[i][k]*tmp)%rhl;
}
}
return (res+rhl)%rhl;
} int main(){
#ifndef ONLINE_JUDGE
freopen("stranger.in","r",stdin);
freopen("stranger.out","w",stdout);
#endif
n=gi(),fac[]=ifac[]=;
for (RG int i=;i<=n;++i){
inv[i]=i==?:1LL*(rhl-rhl/i)*inv[rhl%i]%rhl;
fac[i]=1LL*fac[i-]*i%rhl;
ifac[i]=1LL*ifac[i-]*inv[i]%rhl;
}
for (RG int i=,u,v;i<n;++i)
u=gi(),v=gi(),g[u][v]=g[v][u]=;
for (RG int k=;k<=n;++k){
for (RG int i=;i<=n;++i)
for (RG int j=;j<=n;++j) a[i][j]=;
for (RG int i=;i<n;++i)
for (RG int j=i+,tmp;j<=n;++j){
tmp=g[i][j] ? k : ;
a[i][j]-=tmp,a[j][i]-=tmp;
a[i][i]+=tmp,a[j][j]+=tmp;
}
p[len=]=1LL*gauss()*ifac[k-]%rhl*ifac[n-k]%rhl;
if ((n-k)&) p[]=rhl-p[];
for (RG int t=,tmp;t<=n;++t){
if (k==t) continue; tmp=rhl-t;
for (RG int i=++len;~i;--i)
p[i]=(1LL*tmp*p[i]+(i?p[i-]:))%rhl;
}
for (RG int i=;i<=len;++i){
ans[i]+=p[i],p[i]=; if (ans[i]>=rhl) ans[i]-=rhl;
}
}
for (RG int i=;i<n;++i) printf("%d ",ans[i]); return ;
}

codeforces 917D Stranger Trees的更多相关文章

  1. Codeforces 917D - Stranger Trees(矩阵树定理/推式子+组合意义)

    Codeforces 题目传送门 & 洛谷题目传送门 刚好看到 wjz 在做这题,心想这题之前好像省选前做过,当时觉得是道挺不错的题,为啥没写题解呢?于是就过来补了,由此可见我真是个大鸽子(( ...

  2. 题解-Codeforces917D Stranger Trees

    Problem \(\mathrm{Codeforces~917D}\) 题意概要:一棵 \(n\) 个节点的无向树.问在 \(n\) 个点的完全图中,有多少生成树与原树恰有 \(k\) 条边相同,对 ...

  3. CF917D Stranger Trees

    CF917D Stranger Trees 题目描述 给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合. 矩阵树定理+高斯消元 我们答案为\(f ...

  4. 【CF917D】Stranger Trees 树形DP+Prufer序列

    [CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...

  5. Solution -「CF 917D」Stranger Trees

    \(\mathcal{Description}\)   Link.   给定一棵包含 \(n\) 个点的有标号树,求与这棵树重合恰好 \(0,1,\cdots,n-1\) 条边的树的个数,对 \(10 ...

  6. Codeforces 677C. Coloring Trees dp

    C. Coloring Trees time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  7. codeforces 711C Coloring Trees(DP)

    题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...

  8. 【动态规划】Codeforces 711C Coloring Trees

    题目链接: http://codeforces.com/problemset/problem/711/C 题目大意: 给N棵树,M种颜色,已经有颜色的不能涂色,没颜色为0,可以涂色,每棵树I涂成颜色J ...

  9. CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)

    题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...

随机推荐

  1. Web开发技术选型之Java与PHP

    PHP与J2EE的对比 网上有很多关于PHP与J2EE之间的对比,细观无非以下几点: 1.语言特征 PHP为脚本语言,解释型语言,弱类型,专为Web开发打造.Java为C语言系编程语言,编译型,强类型 ...

  2. golang命令和VSCode配置

    Go是一门全新的静态类型开发语言,具有自动垃圾回收.丰富的内置类型.函数多返回值.错误处理.匿名函数.并发编程.反射等特性 golang常用命令: go env #查看go的环境 echo %GORO ...

  3. SQL Server将DataTable传入存储过程(Table Value Parameter)

    博主在做毕业设计的时候,需要用到事务处理和多次将数据写入不同的表中,但是 SQL Server 数据库是不支持数组类型变量的,想要实现数组的功能,可以通过 XML 和数据表的方法实现,但是实现方法非常 ...

  4. Linux**系统实现log日志自动清理

    Linux系统实现log日志自动清理 *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: ...

  5. windows emacs 中拷贝文件

    cp d:/workspace/LoginWeb/target/LoginWeb.war D:/Program\ Files/apache-tomcat-7.0.78/webapps/LoginWeb ...

  6. composer gitlab 搭建私包

    一.建立私包git 1.执行composer init 根据提示生成composer.json 2.编辑composer.json 目录格式 { "name": "iar ...

  7. nodo合并多个mp3文件

    nodo合并多个mp3文件 会使用到node中的fs - 文件系统 import fs from 'fs'; //读取目录下的文件,返回文件名数组[0x2.mp3,f0k.mp3]; const fi ...

  8. <Android 应用 之路> MPAndroidChart~BubbleChart(气泡图) and RadarChart(雷达图)

    简介 MPAndroidChart是PhilJay大神给Android开发者带来的福利.MPAndroidChart是一个功能强大并且使用灵活的图表开源库,支持Android和iOS两种,这里我们暂时 ...

  9. The difference between creating a string object constructor and assigning it directly

    字符串对象构造方法创建和直接赋值的区别? package com.itheima_02; /* * 通过构造方法创建的字符串对象和直接赋值方式创建的字符串对象有什么区别呢? * 通过构造方法创建字符串 ...

  10. JS计算距当前时间的时间差

    /** * JS获取距当前时间差 * * @param int time JS毫秒时间戳 * */ function get_time_diff(time) { var diff = ''; var ...