BZOJ 2806 【CTSC2012】 Cheat
题目链接:Cheat
话说这道题很久以前某人就给我们考过,直到现在,我终于把这个坑填上了……
这道题要我们把一个串\(S\)划分成若干块,每块长度不小于\(L_0\),使得能够在文章库中完全匹配的块的长度和占总长度的\(90\%\)以上。首先,答案显然是可以二分的。于是,我们就可以二分一个答案\(ans\),考虑如何\(check\)。
很显然的一个想法就是\(dp\)。如果我们知道这个串的第\(i\)位往前最多能够走\(x_i\)位,使得\(S_{i-x_i}\)到\(S_i\)组成的串能够在文章库中匹配,那么我们就可以写出\(dp\)方程了:\begin{aligned} f_i=&\max \{ f_j+i-j \}(i-x_i \le j \le i-ans) \\ = &i+\max \{ f_i-j \}\ (i-x_i \le j \le i-ans) \end{aligned}
当然,\(f_i=\max(f_i,f_{i-1})\)
然后,我们就可以发现\(i-x_i\)是单调的(话说我刚开始还没有看出来),然后由于\(i-ans\)显然也是单调的,所以我们就可以弄个单调队列维护区间最大值即可。最后再判断一下总的匹配长度是否大于等于总长度的\(90\%\)即可。
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 2200010 using namespace std;
typedef long long llg; int n,m,tot,last,f[maxn>>1],L,pi[maxn>>1];
int son[maxn][2],fa[maxn],len[maxn],d[maxn>>1],ld,rd;
char s[maxn>>1]; void add(int p,int x){
int np=++tot; len[np]=len[p]+1,fa[np]=p; last=np;
for(;p && !son[p][x];p=fa[p]) son[p][x]=np;
if(!p) fa[np]=1;
else{
int q=son[p][x];
if(len[q]==len[p]+1) fa[np]=q;
else{
int nq=++tot;
memcpy(son[nq],son[q],sizeof(son[q]));
fa[nq]=fa[q]; fa[q]=fa[np]=nq; len[nq]=len[p]+1;
for(;son[p][x]==q;p=fa[p]) son[p][x]=nq;
}
}
} bool check(int x){
ld=rd=0;
for(int i=1;i<=L;i++){f[i]=f[i-1];
if(i>=x){
while(ld<rd && f[d[rd-1]]-d[rd-1]<=f[i-x]-i+x) rd--;
d[rd++]=i-x;
}
while(ld<rd && d[ld]<i-pi[i]) ld++;
if(ld<rd) f[i]=max(f[i],f[d[ld]]-d[ld]+i);
}
return f[L]*10>=9*L;
} int main(){
File("a");
scanf("%d %d",&n,&m); tot=1;
for(int i=1,l;i<=m;i++){
scanf("%s",s+1);
last=1; l=strlen(s+1);
for(int j=1;j<=l;j++) add(last,s[j]-'0');
}
for(int i=1,l,r,mid;i<=n;i++){
scanf("%s",s+1);
l=0; L=r=strlen(s+1);
for(int j=1,p=1,le=0;j<=L;j++){
while(p!=1 && !son[p][s[j]-'0']) p=fa[p],le=len[p];
if(son[p][s[j]-'0']) p=son[p][s[j]-'0'],le++; pi[j]=le;
}
while(l!=r){
mid=(l+r+1)>>1;
if(check(mid)) l=mid;
else r=mid-1;
}
printf("%d\n",l);
}
return 0;
}
BZOJ 2806 【CTSC2012】 Cheat的更多相关文章
- 【BZOJ2806】【CTSC2012】Cheat 广义后缀自动机+二分+Dp
题目 题目在这里 思路&做法 我们先对标准作文库建广义后缀自动机. 然后对于每一篇阿米巴的作文, 我们首先把放到广义后缀自动机跑一遍, 对于每一个位置, 记录公共子串的长度\((\)即代码和下 ...
- 【BZOJ2806】【CTSC2012】Cheat - 广义后缀自动机+单调队列优化DP
题意: Description Input 第一行两个整数N,M表示待检查的作文数量,和小强的标准作文库的行数 接下来M行的01串,表示标准作文库 接下来N行的01串,表示N篇作文 Output N行 ...
- 【BZOJ2806】Cheat(后缀自动机,二分答案,动态规划,单调队列)
[BZOJ2806]Cheat(后缀自动机,二分答案,动态规划,单调队列) 题面 BZOJ 洛谷 题解 很有趣的一道题啊 对于在所有的串上面进行匹配? 很明显的后缀自动机 所以先构建出广义后缀自动机 ...
- BZOJ 1854 【Scoi2010】 游戏
Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性 ...
- BZOJ 1303 【CQOI2009】中位数图
baidu了一下bzoj水题列表...找到这道题. 题目大意:给定一个数t,在给定的一段包含1-n的序列中找出多少个长度为奇数子序列的中位数为t. 第一眼没看数据范围,于是开心的打了一个O(n^3 ...
- BZOJ 1853 【Scoi2010】 幸运数字
Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认 为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,8 ...
- BZOJ 1026 【SCOI2009】 windy数
Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个windy数? I ...
- BZOJ 3669 【NOI2014】 魔法森林
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
- UOJ#58/BZOJ 3052【WC2013】糖果公园
好写好调的莫队算法,就算上树了仍然好写好调. 传送门 http://uoj.ac/problem/58 简要做法 将树按照dfs序分块,然后将询问按照(u所在块,v所在块,时间)作为关键字进行排序,依 ...
随机推荐
- c# WinForm 边框阴影窗体
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- awk中的冒泡排序
算法中经典的排序方式,今也用awk来实现下,代码如下: BEGIN { count=} {arrary[count]=$ count++ } END{ ;i>-;i--) { ;j<i;j ...
- OC开发_代码片段——代码编写简单的tableViewCell
许久前写的简单的tableView例子,主要针对处理缓存.协议.数据源datasource.局部刷新等问题进行解析. 其实这是一篇不全面的记录,只是用来记录一些备忘的东西,更全面的是使用TablVie ...
- spring 配置中相关属性的含义:
1:parent元素属性 一个bean定义可能会包含大量的配置信息,包括容器相关的信息(比如初始化方法,静态工厂方法等等)以及构造函数参数和属性的值.一个child bean定义是一个能够从paren ...
- Tfs 2015 代理池配置笔记
Tfs的构建代理池其实是在代理服务器上开启一个TFSBuild的代理服务,配好相关的Tfs地址后,就能在Tfs管理界面看到了. 如果是Tfs服务和发布代理是同一台服务器,具体操作详见: 安装TFS20 ...
- ES_DEVOPS-1
When dealing with a large number of parallel operations in elasticsearch, such as search requests or ...
- SDL结合QWidget的简单使用说明
SDL(Simple DirectMeida Layer)是一个简单的封装媒体库,功能主要涉及了相关于OpenGL或者DirectX的显卡硬件功能和一些鼠标,键盘等外设访问.这里主要只说明一下它的渲染 ...
- EOS主网节点部署
EOS主网节点部署 #环境 ubuntu 16.4 EOS编译安装 EOS主网节点部署 eos区块查询.进程监控shell #EOS编译安装 #环境 ubuntu 16.4 # EOS安装部 # 以下 ...
- 洛谷P1858 多人背包 多人背包板子题/多人背包学习笔记
,,,本来自以为,我dp学得还挺好的 然后今天一考发现都不会啊QAQ 连最基础的知识点都不清楚啊QAQ 所以就来写个题解嘛! 先放下板子题 其实我jio得,这题只要大概了解方法就不是很难鸭,,,毕竟是 ...
- 离线状态 Postman不能开启Postman Interceptor解决
目前的postman插件如果想正常使用,必须安装Postman Interceptor插件,这样才能直接使用chrome浏览器的cookie等信息,否则postman是无法完成老版本的功能的. 直接使 ...