题目传送门

首先这个题我们一看它就是和概率期望有关,而大多数时候在OI中遇到他们时,都是与dp相关的。

\(Vergil\)学长表示,作为\(NOIp2016\)的当事人,他们考前奶联赛一定不会考概率期望,结果...真香!\(qwq\)。

不过\(NOIp\)还是对像我这样的菜到不会正解只会写暴力的蒟蒻来说还是很友好的==。据说这题暴力分都拿满有\(80pts+\)。作为第三题的分量真的很友好。

暑假学长就是用的这个题给我们讲的二进制枚举。性感学长在线\(debug\)。

64分做法:

注意到1~15测试点的\(n\)范围在\(20\)内,考虑二进制枚举。具体来说,就是把\(n\)个时间段压在一个二进制位上,如果是0,说明他没选择换,如果是1,说明他换了(用了申请机会)。但是注意,因为申请成功是有概率的,即你换了也不一定成功,所以我们还要枚举申请的订单是否能成功。

也就是说,这是一个二进制枚举套二进制枚举。第一步,枚举申请换的教室;第二步,枚举申请的教室是否成功。

至于两点间的距离,注意到\(v<=300\),我们可以用\(floyd\)算法在\(O(v^3)\)的复杂度内完成最短路计算。

	memset(dis,0x3f,sizeof(dis));
for(int i=1;i<=e;i++)
{
int x=0,y=0,z=0;
scanf("%d%d%d",&x,&y,&z);
dis[x][y]=min(dis[x][y],z);
dis[y][x]=min(dis[y][x],z);
}
for(int i=1;i<=v;i++) dis[0][i]=0,dis[i][i]=0;
for(int k=1;k<=v;k++)
for(int i=1;i<=v;i++)
for(int j=1;j<=v;j++)
dis[i][j]=min(dis[i][k]+dis[k][j],dis[i][j]);

至于二进制枚举,我们可以用一个简单的位运算技巧来简化代码。

		for(int j=0;j<n;j++)
if((1<<j)&i) cnt++;

其中\(i\)是我们枚举的状态(压成十进制后的),满足\(if\)中的条件即证明\(j\)这位在\(i\)表示的二进制数下为1.

#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std; int n,m,v,e,fake,tot,pos;
int c[500],d[500],sta[500],fk[500],dis[500][500];
double ans=1e9,kk[500]; int main()
{
scanf("%d%d%d%d",&n,&m,&v,&e);
for(int i=1;i<=n;i++) scanf("%d",&c[i]);
for(int i=1;i<=n;i++) scanf("%d",&d[i]);
for(int i=1;i<=n;i++) scanf("%lf",&kk[i]);
memset(dis,0x3f,sizeof(dis));
for(int i=1;i<=e;i++)
{
int x=0,y=0,z=0;
scanf("%d%d%d",&x,&y,&z);
dis[x][y]=min(dis[x][y],z);
dis[y][x]=min(dis[y][x],z);
}
for(int i=1;i<=v;i++) dis[0][i]=0,dis[i][i]=0;
for(int k=1;k<=v;k++)
for(int i=1;i<=v;i++)
for(int j=1;j<=v;j++)
dis[i][j]=min(dis[i][k]+dis[k][j],dis[i][j]);
fake=(1<<n)-1;
for(int i=0;i<=fake;i++)
{
int cnt=0;tot=0;pos=0;
double re=0;
for(int j=0;j<n;j++)
if((1<<j)&i) cnt++;
//第一步 枚举申请换的教室
if(cnt>m) continue;
for(int j=0;j<n;j++)
if((1<<j)&i) sta[++tot]=j+1;
//记录都是哪些教室申请换了
int res=(1<<tot)-1;
//第二步,枚举申请的教室是否成功
for(int k=0;k<=res;k++)
{
for(int o=1;o<=n;o++) fk[o]=0;
//清空标记
for(int o=0;o<tot;o++)
if((1<<o)&k) fk[sta[o+1]]=1;
//记录当前枚举的申请情况
int be=0,dist=0;
double p=1;
for(int qwq=1;qwq<=n;qwq++)
{
if(i&(1<<(qwq-1)))
{//申请了 但是可能成功或没成功
int to=fk[qwq] ? d[qwq] : c[qwq];
dist+=dis[be][to];
be=to;
double hu=fk[qwq] ? kk[qwq] : 1-kk[qwq];
p*=hu;
}
else dist+=dis[be][c[qwq]],be=c[qwq];
}
re+=dist*p;
}
ans=min(ans,re);
}
printf("%.2lf",ans);
return 0;
}

堪称二进制枚举的经典鸭

满分做法:

当然是\(dp\)辣hhh。

状态和转移感觉设计并不难。我们考虑设计这样一个状态:\(f[i][j][0]\)和\(f[i][j][1]\)。其中\(f[i][j][0]\)表示当前是第\(i\)节课,之前包括现在共已申请了\(j\)个订单,当前没有申请订单。而\(f[i][j][1]\)即为当前申请了订单。

显然我们当前的状态是从之前的状态转移而来的,当前有换和不换两种选择(状态设计中),那么上一个状态即\(i-1\)也有换与不换两种选择。我们只要分别捋清楚就行了。只是需要注意的是:首先期望是相加的,因为概率的基本性质,互斥的事件可加。(我也布吉岛这么说是否准确\(qwq\))其次,只要存在申请订单的时刻,那么必然有申请成功和申请失败两种事件,因为申请订单是一个随机事件,成功不是必然事件,也不是不可能事件,于是我们需要分别算他们的期望,相加。

于是我们得到了十分冗杂的转移方程(虽然麻烦,但是明白上一点后非常清楚好想)

\(f[i][j][0]=min(f[i-1][j][0],f[i-1][j][1]+k[i-1]*dis[c[i]][d[i-1]]+(1-k[i-1])*dis[c[i]][c[i-1]])\)

\(f[i][j][1]=min(f[i-1][j-1][0]+k[i]*dis[d[i]][c[i-1]]+(1-k[i])*dis[c[i]][c[i-1]],f[i-1][j-1][1]+k[i]*k[i-1]*dis[d[i]][d[i-1]]+k[i]*(1-k[i-1])*dis[d[i]][c[i-1]]\)

最后我们找出最小的合法答案。

#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std; int n,m,v,e;
int c[3000],d[3000],dis[500][500];
double ans=1e9,k[3000],f[2500][2500][3]; int main()
{
scanf("%d%d%d%d",&n,&m,&v,&e);
for(int i=1;i<=n;i++) scanf("%d",&c[i]);
for(int i=1;i<=n;i++) scanf("%d",&d[i]);
for(int i=1;i<=n;i++) scanf("%lf",&k[i]);
memset(dis,0x3f,sizeof(dis));
for(int i=1;i<=v;i++) dis[i][i]=0,dis[0][i]=0;
for(int i=1;i<=e;i++)
{
int x=0,y=0,z=0;
scanf("%d%d%d",&x,&y,&z);
dis[x][y]=min(dis[x][y],z);
dis[y][x]=min(dis[y][x],z);
}
for(int kk=1;kk<=v;kk++)
for(int i=1;i<=v;i++)
for(int j=1;j<=v;j++)
dis[i][j]=min(dis[i][j],dis[i][kk]+dis[kk][j]);
for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
f[i][j][0]=f[i][j][1]=1e9;
f[1][0][0]=0;
f[1][1][1]=0;
for(int i=2;i<=n;i++)
for(int j=0;j<=m;j++)
{
f[i][j][0]=min(f[i-1][j][0]+dis[c[i]][c[i-1]],f[i-1][j][1]+k[i-1]*dis[c[i]][d[i-1]]+(1-k[i-1])*dis[c[i]][c[i-1]]);
if(j==0) continue;
f[i][j][1]=min(f[i-1][j-1][0]+k[i]*dis[d[i]][c[i-1]]+(1-k[i])*dis[c[i]][c[i-1]],f[i-1][j-1][1]+k[i]*k[i-1]*dis[d[i]][d[i-1]]+k[i]*(1-k[i-1])*dis[d[i]][c[i-1]]+(1-k[i])*k[i-1]*dis[c[i]][d[i-1]]+(1-k[i])*(1-k[i-1])*dis[c[i]][c[i-1]]);
}
for(int i=0;i<=m;i++)
for(int j=0;j<=1;j++)
ans=min(ans,f[n][i][j]);
printf("%.2lf",ans);
return 0;
}

另一些细节:

本题变量名极其容易搞混,因为太多了orz。\(Vergil\)学长就是这样在考场上\(68pts->8pts\)。平时的点边习惯用\(n\)而这里是\(v\)。

\(f\)数组的赋初值:\(f[1][0][0]=0\),\(f[1][1][1]=0\)。

转移的时候注意边界。\(i\)从2开始,第二种转移在\(j=0\)时不能进行转移

题出的好!难度适中,覆盖知识点广,题目又着切合实际的背景,解法比较自然。给出题人点赞 !

Luogu P1850换教室【期望dp】By cellur925的更多相关文章

  1. Luogu P1850 换教室(期望dp)

    P1850 换教室 题意 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1\l ...

  2. P1850 换教室 期望dp

    P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq ...

  3. P1850 换教室——期望DP

    题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n2n 节课程安排在 nnn 个时间段上.在第 iii(1≤i≤n1 \leq i ...

  4. 换教室(期望+DP)

    换教室(期望+DP) \(dp(i,j,1/0)\)表示第\(i\)节课,申请了\(j\)次调换,这节课\(1/0\)调换. 换教室 转移的时候考虑: 上次没申请 这次也没申请 加上\(dis(fr[ ...

  5. Bzoj 4720 换教室 (期望DP)

    刚发现Bzoj有Noip的题目,只会换教室这道题..... Bzoj 题面:Bzoj 4720 Luogu题目:P1850 换教室 大概是期望DPNoip极其友好的一道题目,DP不怎么会的我想到了,大 ...

  6. Luogu P1850 [NOIp2016提高组]换教室 | 期望dp

    题目链接 思路: <1>概率与期望期望=情况①的值*情况①的概率+情况②的值*情况②的概率+--+情况n的值*情况n的概率举个例子,抛一个骰子,每一面朝上的概率都是1/6,则这一个骰子落地 ...

  7. 【bzoj4720】[NOIP2016]换教室 期望dp

    题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...

  8. 【BZOJ4720】【NOIP2016】换教室 [期望DP]

    换教室 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Input 第一行四个整数n,m,v ...

  9. 【bzoj4720】[Noip2016]换教室 期望dp+最短路

    Description 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节 课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的 ...

  10. bzoj4720: [Noip2016]换教室(期望dp)

    4720: [Noip2016]换教室 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1294  Solved: 698[Submit][Status ...

随机推荐

  1. spring MVC使用Interceptor做用户登录判断

    在任何一个项目中,我们必须要用到的就是用户登录,那么就少不了用户是否登录的判断,如果我们每一个请求都要去做一次判断,那么就会变得很麻烦,但我们复制粘贴的时候我们就要考虑我们的代码写的是不是有问题,是不 ...

  2. 常量,字段,构造方法 调试 ms 源代码 一个C#二维码图片识别的Demo 近期ASP.NET问题汇总及对应的解决办法 c# chart控件柱状图,改变柱子宽度 使用C#创建Windows服务 C#服务端判断客户端socket是否已断开的方法 线程 线程池 Task .NET 单元测试的利剑——模拟框架Moq

    常量,字段,构造方法   常量 1.什么是常量 ​ 常量是值从不变化的符号,在编译之前值就必须确定.编译后,常量值会保存到程序集元数据中.所以,常量必须是编译器识别的基元类型的常量,如:Boolean ...

  3. MD5介绍及Windows下对文件做md5校验。

    MD5介绍参考百度百科: 摘要如下: MD5 校验和(checksum)通过对接收的传输数据执行散列运算来检查数据的正确性. 一个散列函数,比如 MD5,是一个将任意长度的数据字符串转化成短的固定长度 ...

  4. Redis java使用

    直接应用redis.clients:jedis的jar包到项目中,然后直接就可以使用,具体对五种类型的数据操作方法,可以翻代码找到. 连接到 redis 服务 实例 import redis.clie ...

  5. appium安装报错但运行成功

    npm install -g  appium ERR! fetch failed https://registry.npmjs.org/appium-uiauto/-/appium-uiauto-1. ...

  6. CodeForces 559C Gerald and Gia (格路+容斥+DP)

    CodeForces 559C Gerald and Gia 大致题意:有一个 \(N\times M\) 的网格,其中有些格子是黑色的,现在需要求出从左上角到右下角不经过黑色格子的方案数(模 \(1 ...

  7. 内核添加dts后,device和device_driver的match匹配的变动:通过compatible属性进行匹配【转】

    本文转载自:http://blog.csdn.net/ruanjianruanjianruan/article/details/61622053 内核添加dts后,device和device_driv ...

  8. HDU2181 哈密顿绕行世界问题 —— DFS

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2181 哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others) ...

  9. 织梦DEDE多选项筛选_联动筛选功能的实现_二次开发

    织梦默认的列表页没有筛选功能,但有时候我们做产品列表页的时候,产品的字段比较多,很多人都需要用到筛选功能,这样可以让用户更方便的找到自己所需要的东西,实现这个联动筛选功能需要对织梦进行二次开发,下面就 ...

  10. DedeCms如何调用Discuz论坛主题等数据方法总结

    DedeCms如何调用Discuz论坛主题等数据方法总结 同时使用Dedecms和Discuz论坛的朋友,难免要在网站内调用论坛的内容.使用Discuz论坛的JS调用方式,对搜索引擎不够友好,下面我们 ...