Dungeon Game -- latched
The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. The dungeon consists of M x N rooms laid out in a 2D grid. Our valiant knight (K)
was initially positioned in the top-left room and must fight his way through the dungeon to rescue the princess.
The knight has an initial health point represented by a positive integer. If at any point his health point drops to 0 or below, he dies immediately.
Some of the rooms are guarded by demons, so the knight loses health (negative integers) upon entering these rooms; other rooms are either empty (0's) or contain magic orbs that increase the knight's health (positive integers).
In order to reach the princess as quickly as possible, the knight decides to move only rightward or downward in each step.
Write a function to determine the knight's minimum initial health so that he is able to rescue the princess.
For example, given the dungeon below, the initial health of the knight must be at least 7 if he follows the optimal path RIGHT->
.
RIGHT -> DOWN -> DOWN
-2 (K) | -3 | 3 |
-5 | -10 | 1 |
10 | 30 | -5 (P) |
Notes:
- The knight's health has no upper bound.
- Any room can contain threats or power-ups, even the first room the knight enters and the bottom-right room where the princess is imprisoned.
基本思路:
动态规划
设health[i][j] 为走进dungeon[i][j]的初始血量,且该个血量将能维持到骑士足以走完右下角。
已知条件:骑士走完右下角至少要剩一滴血。即health[m][n-1] = 1。
m为dungeon行数。
也能够设health[m-1][n] = 1。
此值表示走完右下角的剩余血量。
同一时候也是从该右下角向右,或者向下。走到还有一格时的初始血量。 当然此两格是虚拟的,地牢中不存在。或者形象的说,从右下角向右或者向下走出地牢后,剩余的血量。
从此点。能够倒推出health[0][0]。
骑士仅仅能向右,向下右移动。 要知道当前位置的初始血量,仅仅须要知道其右和其下的初始血量,就能够反推出。
即
health[i][j] = min(health[i+1][j], health[i[j+1]) - dungeon[i][j]
因为骑士要时刻保持血量至少为1. 上面能够改为:
health[i][j] = max(1, min(health[i+1][j], health[i[j+1]) - dungeon[i][j])
因为递推时仅仅须要其右和其下,两个位置, 能够使用滚动数组。用一维替换掉二维数组。
class Solution {
public:
int calculateMinimumHP(vector<vector<int>>& dungeon) {
if (dungeon.empty() || dungeon[0].empty())
return 0;
const int m = dungeon.size();
const int n = dungeon[0].size();
vector<int> health(n+1, INT_MAX);
health[n-1] = 1;
for (int i=m-1; i>=0; i--) {
for (int j=n-1; j>=0; j--) {
health[j] = max(1, min(health[j], health[j+1]) - dungeon[i][j]);
}
}
return health[0];
}
};
Dungeon Game -- latched的更多相关文章
- [LeetCode] Dungeon Game 地牢游戏
The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. ...
- POJ 2251 Dungeon Master(3D迷宫 bfs)
传送门 Dungeon Master Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 28416 Accepted: 11 ...
- poj 2251 Dungeon Master
http://poj.org/problem?id=2251 Dungeon Master Time Limit: 1000MS Memory Limit: 65536K Total Submis ...
- ✡ leetcode 174. Dungeon Game 地牢游戏 --------- java
The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. ...
- leetcode174. Dungeon Game
// learn from https://discuss.leetcode.com/topic/6912/c-dp-solution ''' class Solution { public: int ...
- 【leetcode】Dungeon Game
Dungeon Game The demons had captured the princess (P) and imprisoned her in the bottom-right corner ...
- Dungeon Game ——动态规划
The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. ...
- Java for LeetCode 174 Dungeon Game
The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. ...
- LeetCode Dungeon Game
原题链接在这里:https://leetcode.com/problems/dungeon-game/ 这是一道DP题,保存当前格到右下格所需要的最小体力,m*n的dp数组保存. 更新是Math.mi ...
随机推荐
- 介绍Git的17条基本用法
本文将介绍Git的17条基本用法.本文选自<Python全栈开发实践入门>. 1.初始化Git仓库 Git仓库分为两种类型:一种是存放在服务器上面的裸仓库,里面没有保存文件,只是存放.gi ...
- android cmd adb命令安装和删除apk应用
copy自http://blog.csdn.net/xpsharp/article/details/7289910 1. 安装Android应用程序 1) 启动Android模拟器 2) adb in ...
- JavaScript 单例,Hash,抛异常
1. 单例 ECMA 5 版 记得以前写过几种单例实现,找不到了... function Singleton() { if (this.constructor.instance) { return t ...
- WINVER WIN32 WINNT
WINVER 和 _WIN32_WINNT 请在WINDOWS.H前定义 从 Visual C++ 2008 开始,Visual C++ 不支持面向 Windows 95.Windows 98.Win ...
- ThinkPHP---拓展之jQuery的ajax
[前言] 用Sublime开发时,推荐下载一个jQuery插件,可以智能化创建基本函数格式,支持自动生成,可以提高开发效率 (1)jQuery里ajax方法有几个? 答:有4个,分别为post.get ...
- Microsoft SQL Server 存储过程
Microsoft SQL Server 存储过程 TRIGGER DDL触发器:主要用于防止对数据库架构.视图.表.存储过程等进行的某些修改:DDL事件是指对数据库CREATE,ALTER,DROP ...
- 09Oracle Database 数据表数据插入,更新,删除
Oracle Database 数据表数据插入,更新,删除 插入数据 Insert into table_name(column) values(values); insert into studen ...
- Spring Boot 2.0的属性绑定
Spring Boot2.0的属性绑定 原文从Spring boot第一个版本以来,我们可以使用@ConfigurationProperties注解将属性绑定到对象.也可以指定属性的各种不同格式.比如 ...
- for循环,isinstance() 函数
#isinstance()的运用 #练习: 求值总和以及平均值. str_list = [1,2,3,4,5,6,'a',7,8,9,'b',10,'c'] my_tal = 0 my_var = 0 ...
- JAVA学习笔记16——线程生命周期
当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态,在线程的生命周期中,它要经过新建(New).就绪(Runnable).运行(Running).阻塞(Blocking)和 ...