n<=10000000的图,满足:如果(i,j)>1就连一条边权1的无相变,问所有d(u,v) (u<=v)--u到v的最短路之和。

首先1和>n/2的质数都是孤立的点。然后两个数x,y如果(x,y)>1最短路就1,如果(x,y)=1且x,y都不是1或>n/2的质数一定能走,具体这么走:$P_x$--x的最小质因子,那就$x->p_x*p_y->y$,那这样都走不了,还有:$x->p_x*2->p_y*2->y$这种一定走得了,因为x或y如果是合数那$p_x$最大是根号的,再*2根本爆不了;如果是质数那由于<=n/2,所以自己*2一定不会爆,因此就统计1的路径数,2的路径数和3的路径数即可。

1的路径数:$\sum_{1<=x<=n,1<=y<=n}(x,y)>1=\sum_{x=1}^{n}x-1-\varphi (x)$。

3的路径数用总的减掉1和2的。

2的路径数,也就是满足$(x,y)=1$且$p_x*p_y<=n$且$x>1,y>1$且x,y都不是大于n/2的质数的:

(1)x,y都是合数:那直接枚举合数,然后$\sum_{y是合数}^{n} \varphi (y)- (<=y的质数) + (x的质因子数)-1$,注意到这一条说的质数、质因子都是包括>n/2的。

(2)x质y合:那也枚举合数,$\sum_{y是合数}^{n} s_y-(y的质因子数)$,其中$s_y$表示比$x*p_y<=n$的质数x的数量,注意到这一条说的质数、质因子都是不包括>n/2的。

(3)x质y质,那枚举质数,$\sum_{y是质数}^{n} x*y<=n$,即$x<=n/y$,注意到这里枚举的质数是<=n/2的,而且这里统计的x也是<=n/2的。

OK!

 #include<string.h>
#include<stdlib.h>
#include<stdio.h>
//#include<assert.h>
#include<algorithm>
//#include<iostream>
using namespace std; int n;
#define maxn 10000011
int prime[maxn/],lp=,phi[maxn],small[maxn],sum[][maxn],sonofbitch[][maxn]; bool notprime[maxn];
void pre(int n)
{
phi[]=; sum[][]=sum[][]=;
for (int i=;i<=n;i++)
{
sum[][i]=sum[][i-]+(!notprime[i] && i*<=n);
sum[][i]=sum[][i-]+(!notprime[i]);
if (!notprime[i]) {prime[++lp]=i; phi[i]=i-; sonofbitch[][i]=(i*<=n);
sonofbitch[][i]=; small[i]=i;}
for (int j=;j<=lp && 1ll*i*prime[j]<=n;j++)
{
notprime[i*prime[j]]=; small[i*prime[j]]=prime[j];
if (i%prime[j])
{
phi[i*prime[j]]=phi[i]*(prime[j]-);
sonofbitch[][i*prime[j]]=sonofbitch[][i]+(prime[j]*<=n);
sonofbitch[][i*prime[j]]=sonofbitch[][i]+;
}
else
{
phi[i*prime[j]]=phi[i]*prime[j];
sonofbitch[][i*prime[j]]=sonofbitch[][i];
sonofbitch[][i*prime[j]]=sonofbitch[][i];
break;
}
}
}
} int main()
{
scanf("%d",&n); pre(n);
#define LL long long
LL tot1=,tot2=,tot3=,m=n-(sum[][n]-sum[][n])-,tot=m*1ll*(m-)/; for (int i=;i<=n;i++) tot1+=i--phi[i]; for (int i=;i<=n;i++)
if (notprime[i])
tot2+=phi[i]-sum[][i]+sonofbitch[][i]-+sum[][n/small[i]]-sonofbitch[][i];
else if (i*<=n) tot2+=sum[][min(i-,n/i)]; tot3=tot-tot1-tot2; printf("%lld\n",tot1+tot2*+tot3*);
return ;
}

Codeforces870F. Paths的更多相关文章

  1. [LeetCode] Binary Tree Paths 二叉树路径

    Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...

  2. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  3. [LeetCode] Unique Paths 不同的路径

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  4. leetcode : Binary Tree Paths

    Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...

  5. UVA 10564 Paths through the Hourglass[DP 打印]

    UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...

  6. LeetCode-62-Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  7. Leetcode Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  8. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  9. soj 1015 Jill's Tour Paths 解题报告

    题目描述: 1015. Jill's Tour Paths Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Every ...

随机推荐

  1. DB buffer bussy wait 分析一例

    ####sample 1: DB层分析OI DB层分析OI的信息如下: 1. 异常时间段,  Logical reads:/ Physical reads/ Physical write  指标都低于 ...

  2. REMOVE A WINDOWS SERVICE

    You can easily remove a Windows service from the Windows registry using a simple command prompt comm ...

  3. 解决重置PostgreSQL 9.6密码的问题

    一.PostgreSql9.6重置密码的方法: 1.打开windows服务管理器,找到“postgresql-x64-9.6”服务,停止服务. 2.找到PostgreSQL9.6的安装目录(以我的E盘 ...

  4. python strip() 函数探究

    strip()方法语法:str.strip([chars]); 声明:str为字符串,rm为要删除的字符序列 str.strip(rm) 删除字符串中开头.结尾处,位于rm删除序列的字符 eg1: # ...

  5. spring mvc 配置运行报错误

    四月 06, 2015 10:51:18 上午 org.apache.catalina.startup.VersionLoggerListener log 信息: Server version: Ap ...

  6. day25-2 OSI协议和socket抽象层

    目录 OSI协议 物理层 数据链路层 以太网协议 Mac地址 广播地址 网络层 获取对方Mac地址(ARP协议) 传输层 TCP协议 UDP协议 应用层 socket抽象层 OSI协议 互联网的本质就 ...

  7. Discuz!代码

    我如何使用Discuz!代码   Discuz!代码 效果 [b]粗体文字 Abc[/b] 粗体文字 Abc [i]斜体文字 Abc[/i] 斜体文字 Abc [u]下划线文字 Abc[/u] 下划线 ...

  8. IO 双引号 输出 输入

    #! /usr/bin/perl use strict;use warnings; print "\n---------<STDIN>_store_into_an_array_a ...

  9. Drop和Truncate与Delete的区别

    1.Drop DROP TABLE test; 删除表test,并释放空间,将test删除的一干二净.(结构也被完全删除) 2.Truncate TRUNCATE test; 删除表test里的内容, ...

  10. redis简介以及安装

    redis作为开源的高性能的键值对数据库,本身是单线程的,性能虽然没有memcache高,但是也是性能跟memcache相差无几的,memcache是多线程的,但是redis本身功能更加强大,学习一下 ...