FlowNet: Learning Optical Flow with Convolutional Networks
|
学习了一篇用CNN做光流的paper,简称FlowNet。
1. 论文题目 FlowNet: Learning Optical Flow with Convolutional Networks

2.背景
- 为什么想到用CNN做光流:最近提出的CNN架构可以做逐像素预测,比如,语义分割和从单图估计深度。所以本文提出end-to-end训练CNNs用于从图像对中预测光流场。
- 光流和其他任务的区别:光流估计需要精确的逐像素定位,也需要找到两个输入图像的对应。这不仅涉及到学习图像特征表达,也要学习在两个图像的不同位置匹配这些特征表达。所以从这方面来看,光流估计和CNNs的以前应用基本上不一样。
3. 本文提出构建CNNs,以有监督的学习方式解决光流估计任务。提出两种架构,并做了对比实验:
- 一种是通用的架构
- 另外一种是包含一个不同图像位置的特征向量关联层。因为不确定用标准的CNN架构能否解决这个问题,就提出了一个有关联层的架构,用来显式地提供匹配功能。这个架构采用end-to-end训练。思想是利用卷积网络学习多级尺度和抽象化的强大特征的能力,然后帮助他基于这些特征找到实际的对应。关联层上面学习如何从这些匹配中来预测流。令人惊讶的是,用这种方式帮助网络并不是 必要的,甚至是原始的网络都能学会以具有竞争力的准确性来预测光流。
4. 已有光流数据集太小,很多没有标注真实值,本文创建了一个新的光流数据集Flying Chairs,用来充分训练CNN。
5. 网络架构
给定足够的有标签数据,CNN 擅长学习输入-输出关系。所以我们采用end-to-end的学习方法预测光流:给定一个包含图像对真实流的数据集,我们训练一个网络直接从图像中预测x-y流场。但是需要设计合适的架构来实现这个目的。
一个简单的选择是把输入图像堆叠起来,把他们通过一个相当普通网络,让网络自己决定怎样处理图像对从而抽取出运动信息,如图2(top)所示,这个只有卷积组成的架构称为“FlowNetSimple”

原则上,如果这个网络足够大,就能学习预测光流,然而,我们无法保证像SGD那样的局部梯度优化能让网络达到全局最优点,因此,手工设计一个不那么通用、但能用给定数据和优化技巧得到好的性能的架构是有好处的。
一个直接的想法就是:针对两个图像,创建两个独立但相同的处理流,然后在后续进程中把他们结合到一起,如图2(bottom)。在这个架构中,网络需要要先分别产生两个图像的有意义的表达,然后在更高级别把他们结合,这类似于标准的匹配方法中一个先从两个图像的patches抽取特征,然后结合这些特征向量。然而,得到两个图像的特征表达后,网络怎么找二者的对应呢?
在匹配进程,我们在网络中引入了一个“correlation layer”(关联层),在两个特征图中做乘法patch比较,包含这个层的网络结构在图2(bottom)中。给定两个多通道的特征图f1、f2,w、h和c是他们的宽度、高度和通道数,我们的关联层就是让网络比较f1中的每个patch和f2中的每个patch。
现在我们只考虑两个patch的单独比较。第一个图的以x1为中心的patch和第二个图的以x2位中心的patch之间的关联就定义为:

方形patch的尺寸为K=2k+1 (k=0)。公式1等同于神经网络中的一个卷积,但不是用滤波器卷积数据,而是用数据卷积数据,所以,没有可训练的权重。
计算c(x1,x2)涉及到cKK次乘法,比较所有的patch组合涉及到wwhh次计算,所以很难处理前向后向过程。为了计算,我们限制最大位移d用于比较,而且在两个特征图中也引入了步长stride。这样通过限制x2的范围,只在D=2d+1 (d=20)的邻域中计算关联c(x1,x2)。我们用步长s1(1)和s2(2),来全局quantize x1,在以x1为中心的邻域内quantize x2。
理论上,关联的结果是4D的:对两个2D位置的每个组合,我们得到一个关联值,即两个分别包含截取patches值的向量的内积。实际上,我们把相对位置用通道表示,这就意味着我们得到了w*h*D*D大小的输出。在反向过程中,我们求关于每个对应底层blob的导数。
6. Refinement

Pooling会导致分辨率减少,为了提供密集的像素预测,我们需要一种方法来refine pool后的coarse表达。我们refine的方法如图3所示,主要的是upconvolutional 上卷积层,由unpooling(与pooling相反,扩展特征图)和卷积组成。为了做refinement,我们在特征图上用上卷积,然后把它和网络的收缩部分’contractive’ 得到的对应特征图、以及一个上采样的coarses流预测连接起来。这样就能既保留coarser特征图的高层信息,又能保留低层特征图的好的局部信息。每个步骤两次增加分辨率,我们重复这个过程4次,得到预测的流,此时的特征图还是原图的四分之一。
我们发现,与对全图像分辨率做计算量更少的双线性上采样相比,从这个分辨率上做更多的refinement并不能显著提升结果,这个双线性上采样的结果就是网络的最终流预测。
我们替换双线性上采样,采用没有匹配项的变分方法:我们在4次下采样分辨率后开始,迭代20次做coarse-to-fine,把流场变为全分辨率。最后,在全图像分辨率上又做了5次迭代。然后把平滑系数换为
,用文献【26】的方法计算图像边界和对应的检测边界,b(x,y)是各自尺度和像素之间的重采样的thin边界的strength。这种放大方法比简单的双线性上采样计算量大,但是增加了变分方法的优点,得到平滑和亚像素准确的流场。在下文中,用变分法refine的结果加后缀+v。变分结果见图4

7. 训练的参数设置
- k=0 d=20 s1=1 s2=2
- loss: endpoint error (EPE) ,是光流估计中标准的error measure,是预测光流向量与真实光流向量的欧氏距离在所有像素上的均值。
- 优化方法:Adam ,无需momentum就能比SGD快速收敛。固定了一些参数:

- mini-batches :8
- learning rate:开始 λ = 1e-4,在第300k次迭代后,每100k次迭代除以2。在FlowNetCorr中λ = 1e-4 会出现梯度爆炸,从较小的学习率λ = 1e-6开始, 在10k次迭代后慢慢增加
达到 λ = 1e-4 ,然后再按照刚刚说的减少。 - 发现测试过程中扩大输入图像能提升性能,尽管最优尺度取决于数据集,我们在所有的任务的每个网络固定了尺度,FlowNetS 没做扩大,FlowNetC 选择1:25的参数
FlowNet: Learning Optical Flow with Convolutional Networks的更多相关文章
- Paper | SkipNet: Learning Dynamic Routing in Convolutional Networks
目录 1. 概括 2. 相关工作 3. 方法细节 门限模块的结构 训练方法 4. 总结 作者对residual network进行了改进:加入了gating network,基于上一层的激活值,得到一 ...
- Optical Flow 发展历程 (1)
Optical flow estimation Traditional Method Variational approach TVL-1 [1] Deep Method Supervised Flo ...
- 论文翻译——Character-level Convolutional Networks for Text Classification
论文地址 Abstract Open-text semantic parsers are designed to interpret any statement in natural language ...
- Deep Learning 33:读论文“Densely Connected Convolutional Networks”-------DenseNet 简单理解
一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么 ...
- How to do Deep Learning on Graphs with Graph Convolutional Networks
翻译: How to do Deep Learning on Graphs with Graph Convolutional Networks 什么是图卷积网络 图卷积网络是一个在图上进行操作的神经网 ...
- 模型压缩-Learning Efficient Convolutional Networks through Network Slimming
Zhuang Liu主页:https://liuzhuang13.github.io/ Learning Efficient Convolutional Networks through Networ ...
- [论文理解] Learning Efficient Convolutional Networks through Network Slimming
Learning Efficient Convolutional Networks through Network Slimming 简介 这是我看的第一篇模型压缩方面的论文,应该也算比较出名的一篇吧 ...
- 【ML】Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for ...
- 论文笔记之:Optical Flow Estimation using a Spatial Pyramid Network
Optical Flow Estimation using a Spatial Pyramid Network spynet 本文将经典的 spatial-pyramid formulation ...
随机推荐
- POJ3177 Redundant Paths —— 边双联通分量 + 缩点
题目链接:http://poj.org/problem?id=3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total ...
- jqplot配置参考
jqPlot整的来说有三个地方需要配置.格式如: $.jqplot(‘target’, data, options);target:要显示的位置.data:显示的数据.options:其它配置 ...
- BZOJ_2099_[Usaco2010 Dec]Letter 恐吓信_后缀自动机+贪心
BZOJ_2099_[Usaco2010 Dec]Letter 恐吓信_后缀自动机 Description FJ刚刚和邻居发生了一场可怕的争吵,他咽不下这口气,决定佚名发给他的邻居 一封脏话连篇的信. ...
- word2vec中的数学原理(转)
- Java Socket实战之二:多线程通信
转自:http://developer.51cto.com/art/201202/317544.htm 上一篇文章说到怎样写一个最简单的Java Socket通信,但是在上一篇文章中的例子有一个问题就 ...
- (转)Bootstrap中glyphicons-halflings-regular.woff字体报404错notfound
http://blog.xmaoseo.com/glyphicons-halflings-regular-woff-font-404-notfound/ 今天查看网站的源代码,发现有个glyphico ...
- Ruby 数式匹配器
str = "x^2 + 12317 +X^2 - Length" str = " x ^ 2 + y ...
- 版本控制系统Git
常用的版本控制系统有VSS.SVN.CVS等等,Git是最近几年使用得比较多的分布式版本控制系统,存在即合理,Git的出现总有它出现的理由,以前的版本控制系统肯定有一些不足的地方,所以才出现了Git. ...
- hdu1115【多边形求重心模板】
1.质量集中在顶点上.n个顶点坐标为(xi,yi),质量为mi,则重心(∑( xi×mi ) / ∑mi, ∑( yi×mi ) / ∑mi) 2.质量分布均匀.这个题就是这一类型,算法和上面的不同. ...
- linux 服务器 vim编辑器打开php文件出现中文乱码
进入服务器目录 [root@VM_139_218_centos /]# cd ~ [root@VM_139_218_centos ~]# vim .vimrc 在 .vimrc 文件中写入以下代码: ...