洛谷 P1183 多边形的面积
题目描述
给出一个简单多边形(没有缺口),它的边要么是垂直的,要么是水平的。要求计算多边形的面积。
多边形被放置在一个 X-YX−Y 的卡笛尔平面上,它所有的边都平行于两条坐标轴之一。然后按逆时针方向给出各顶点的坐标值。所有的坐标值都是整数(因此多边形的面积也为整数)。
输入输出格式
输入格式:
第一行给出多边形的顶点数 n(n≤100)n(n≤100) 。接下来的几行每行给出多边形一个顶点的坐标值 XX 和 YY (都为整数并且用空格隔开)。顶点按逆时针方向逐个给出。并且多边形的每一个顶点的坐标值 -200≤x,y≤200−200≤x,y≤200 。多边形最后是靠从最后一个顶点到第一个顶点画一条边来封闭的。
输出格式:
一个整数,表示多边形的面积。
输入输出样例
10
0 0
4 0
4 1
3 1
3 3
2 3
2 2
1 2
1 3
0 3
9
思路:皮克公式 +搜索。
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 110
using namespace std;
int n,ans,bns;
int map[][];
int dx[]={,,,-};
int dy[]={,-,,};
struct nond{
int x,y;
}point[MAXN];
void dfs(int x,int y){
if(x>||x<||y>||y<||map[x][y]!=) return ;
map[x][y]=;ans++;
dfs(x+,y);dfs(x-,y);
dfs(x,y+);dfs(x,y-);
}
int main(){
scanf("%d",&n);
point[].x=-;point[].y=-;
for(int i=;i<=n+;i++){
if(i<=n){
scanf("%d%d",&point[i].x,&point[i].y);
point[i].x+=;point[i].y+=;bns++;
}
if(i==){
point[n+].x=point[].x;
point[n+].y=point[].y;
}
if(point[i].x==point[i-].x){
int mi=min(point[i].y,point[i-].y);
int ma=max(point[i].y,point[i-].y);
for(int j=mi;j<=ma;j++) map[point[i].x][j]=;
bns+=ma-mi-;
}
else if(point[i].y==point[i-].y){
int mi=min(point[i].x,point[i-].x);
int ma=max(point[i].x,point[i-].x);
for(int j=mi;j<=ma;j++) map[j][point[i].y]=;
bns+=ma-mi-;
}
}
dfs(point[].x+,point[].y+);
cout<<ans+bns/-;
}
洛谷 P1183 多边形的面积的更多相关文章
- 洛谷——P1183 多边形的面积
P1183 多边形的面积 多边形求面积公式: $\frac {\sum_{i=0}^{n-1}(x_iy_{i+1}-y_ix_{i+1})}{2}$ #include<bits/stdc++. ...
- P1183 多边形的面积
一道睡论数论题 其实是AC300祭才做的水题 题意: 很直白的的题意啊,就是求任意一个多边形的面积 所以我们来安利一下一个求多边形面积的数学通式: 给定多边形的顶点坐标(有序),让你来求这个多边形的面 ...
- 洛谷 - P2283 - 多边形 - 半平面交
https://www.luogu.org/problemnew/show/P2283 需要注意max是求解顺序是从右到左,最好保证安全每次都清空就没问题了. #include<bits/std ...
- [洛谷P2745] [USACO5.3]窗体面积Window Area
洛谷题目链接:[USACO5.3]窗体面积Window Area 题目描述 你刚刚接手一项窗体界面工程.窗体界面还算简单,而且幸运的是,你不必显示实际的窗体.有 5 种基本操作: 创建一个新窗体 将窗 ...
- 【洛谷P1318积水面积】最小生成树
我写一篇绝对原创的题解,算法原创,求洛谷通过!!!(让更多人看到这篇题解) 绝大多数人肯定认为这道题是一道模拟题 以下为正解 我们来看一下这一道题,其实就是找到左右高点,在模拟. 但是这个是正常人的想 ...
- 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...
- 「洛谷1884」「USACO12FEB」过度种植【离散化扫描线】
题目链接 [洛谷传送门] 题解 矩阵面积的并模板.(请求洛谷加为模板题) 很明显是要离散化的. 我们将矩阵与\(x\)轴平行的两个线段取出来.并且将这两个端点的\(x1\)和\(x2\)进行离散化. ...
- 洛谷 P1856 【Picture】
题目描述 N(N<5000) 张矩形的海报,照片和其他同样形状的图片贴在墙上.它们的边都是垂直的或水平的.每个矩形可以部分或者全部覆盖其他矩形.所有的矩形组成的集合的轮廓称为周长.写一个程序计算 ...
- 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)
次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...
随机推荐
- HTML标签,简单归纳
列表标签 有序列表: <ol><li></li></ol> 无序列表: <ul><li></li></ul&g ...
- oracle 安装,启动 ,plsql 连接
1.下载oracle 服务器端,正常安装,在选择桌面类或者是服务器类的时候选择服务器类. 2.下载oracle 客户端解压版 下载地址 链接:https://pan.baidu.com/s/1mi ...
- 半斤八两中级破解 (四) TCP_UDP协议转向本地验证
首先要用抓包工具判断是哪种协议,根据封包助手来看,教程中给出的例子是个TCP协议的,此时要记录下包的: 源地址,源端口 目的地址,目的端口 源包大小 目的包大小 然后再重新运行抓包工具和 ...
- Java入门第39课——猜字母游戏之实现字母生成方法
问题 实现猜字母游戏中的字母生成方法,即,随机生成5个不同的字母作为猜测的结果. 方案 实现generate方法,首先声明一个字符类型的数组,用于存储26个大写字母,然后声 ...
- 获取tomcat服务器上的部分日志
Linux下tomcat的日志很大,有的几G大,要用什么工具查看或把日志文件拆解? 一般习惯用 tail 的方式在服务器查看.如果要取下 可以用 tail -2000 xxxx.log > te ...
- 多线程下单例模式的实现_ThreadLocal_ReentrantLock
package threadStudy; public class MultiThreadSingleInstance { // volatile 防止指令重排 private static vola ...
- ubuntu 网卡配置
- JavaSE-21 字符编码简介
ASCII ASCII(American Standard Code for Information Interchange,美国信息交换标准代码)是基于拉丁字母的一套电脑编码系统,主要用于显示现代英 ...
- JavaSE-16 集合框架
学习要点 Java集合框架内容 ArrayList和LinkedList HashMap Iterator 泛型集合 Java的集合框架 1 概述 数据结构是以某种形式将数据组织在一起的集合,它不仅 ...
- MRC转ARC
转载请注明出处:http://blog.csdn.net/cywn_d/article/details/18222671 1.删除所有retain,release和autorelease. 2.把原来 ...