[codeforces538E]Demiurges Play Again

试题描述

Demiurges Shambambukli and Mazukta love to watch the games of ordinary people. Today, they noticed two men who play the following game.

There is a rooted tree on n nodes, m of which are leaves (a leaf is a nodes that does not have any children), edges of the tree are directed from parent to children. In the leaves of the tree integers from 1 to m are placed in such a way that each number appears exactly in one leaf.

Initially, the root of the tree contains a piece. Two players move this piece in turns, during a move a player moves the piece from its current nodes to one of its children; if the player can not make a move, the game ends immediately. The result of the game is the number placed in the leaf where a piece has completed its movement. The player who makes the first move tries to maximize the result of the game and the second player, on the contrary, tries to minimize the result. We can assume that both players move optimally well.

Demiurges are omnipotent, so before the game they can arbitrarily rearrange the numbers placed in the leaves. Shambambukli wants to rearrange numbers so that the result of the game when both players play optimally well is as large as possible, and Mazukta wants the result to be as small as possible. What will be the outcome of the game, if the numbers are rearranged by Shambambukli, and what will it be if the numbers are rearranged by Mazukta? Of course, the Demiurges choose the best possible option of arranging numbers.

输入

The first line contains a single integer n — the number of nodes in the tree (1 ≤ n ≤ 2·105).

Each of the next n - 1 lines contains two integers ui and vi (1 ≤ ui, vi ≤ n) — the ends of the edge of the tree; the edge leads from node ui to node vi. It is guaranteed that the described graph is a rooted tree, and the root is the node 1.

输出

Print two space-separated integers — the maximum possible and the minimum possible result of the game.

输入示例


输出示例

 

数据规模及约定

见“输入

题解

树形 dp。设 mn(u, 0) 表示对于以节点 u 为根的子树中所有叶子从 1 开始编号,当前轮到后手(即希望最终答案最小的人)走所能得到的最小编号;mn(u, 1) 表示轮到先手走所能得到的最小编号。那么显然,因为后手一定是选择下一步最小的儿子走;,我们要让先手选到最大值最小,可以把每个子树 v 中小于等于 mn(v, 0) 的编号拿出来密密地排列,大于 mn(v, 0) 的部分统统扔到后面以免它们占位置。

对于求最大值的情况,做法类似。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 200010
#define maxm 400010
#define oo 2147483647 int n, m, head[maxn], next[maxm], to[maxm];
void AddEdge(int a, int b) {
to[++m] = b; next[m] = head[a]; head[a] = m;
swap(a, b);
to[++m] = b; next[m] = head[a]; head[a] = m;
return ;
}
int cntl, mn[2][maxn], mx[2][maxn];
void calc(int u, int fa) {
bool has = 0;
for(int e = head[u]; e; e = next[e]) if(to[e] != fa)
has = 1, calc(to[e], u);
if(!has) cntl++, mn[0][u] = mn[1][u] = mx[0][u] = mx[1][u] = 1;
return ;
} void dp(int u, int fa) {
if(mn[1][u]) return ;
mn[1][u] = 0; mn[0][u] = oo;
mx[1][u] = oo; mx[0][u] = 0;
for(int e = head[u]; e; e = next[e]) if(to[e] != fa) {
dp(to[e], u);
mn[1][u] += mn[0][to[e]],
mn[0][u] = min(mn[0][u], mn[1][to[e]]),
mx[1][u] = min(mx[1][u], mx[0][to[e]]),
mx[0][u] += mx[1][to[e]];
}
// printf("%d: %d %d %d %d\n", u, mn[1][u], mn[0][u], mx[1][u], mx[0][u]);
return ;
} int main() {
n = read();
for(int i = 1; i < n; i++) {
int a = read(), b = read();
AddEdge(a, b);
} calc(1, 0);
dp(1, 0); printf("%d %d\n", cntl + 1 - mx[1][1], mn[1][1]); return 0;
}

[codeforces538E]Demiurges Play Again的更多相关文章

  1. Codeforces Round #300 E - Demiurges Play Again

    E - Demiurges Play Again 感觉这种类型的dp以前没遇到过... 不是很好想.. dp[u] 表示的是以u为子树进行游戏得到的值是第几大的. #include<bits/s ...

  2. Codeforces 538E Demiurges Play Again(博弈DP)

    http://codeforces.com/problemset/problem/538/E 题目大意: 给出一棵树,叶子节点上都有一个值,从1-m.有两个人交替从根选择道路,先手希望到达的叶子节点尽 ...

  3. 【codeforces 538E】Demiurges Play Again

    [题目链接]:http://codeforces.com/problemset/problem/538/E [题意] 给你一棵树; 有两个人,分别从根节点开始,往叶子节点的方向走; 每个人每次只能走一 ...

  4. Codeforces 刷水记录

    Codeforces-566F 题目大意:给出一个有序数列a,这个数列中每两个数,如果满足一个数能整除另一个数,则这两个数中间是有一条边的,现在有这样的图,求最大联通子图. 题解:并不需要把图搞出来, ...

  5. Codeforces Round #300 解题报告

    呜呜周日的时候手感一直很好 代码一般都是一遍过编译一遍过样例 做CF的时候前三题也都是一遍过Pretest没想着去检查... 期间姐姐提醒说有Announcement也自信不去看 呜呜然后就FST了 ...

随机推荐

  1. Saltstack学习笔记--安装

    实验环境: 两台RHEL 7.2 192.168.75.135          master .minion 192.168.75.136          minion 确保机器的防火墙及seli ...

  2. 机器学习概念之特征选择(Feature selection)

    不多说,直接上干货! .

  3. 刷ID卡的就餐系统

    需求分析:公司旧的考勤系统,缺 “就餐”功能模块,不能查询和统计每天的就餐人数.故需开发一个简易的“刷ID卡的就餐系统”,三 部 分组成,一部分为人事资料的增删改查,二部分为处理从“刷卡就餐机”采集的 ...

  4. css:段落文本两端对齐

    效果图: Css:

  5. knockout Observable Array(监控数组)

    Observable Array(监控数组)的作用 列表操作是经常会遇到的一个场景,使用监控数组,你可以: 保存列表对象,并且使用Ko提供的丰富的API操作列表元素(支持内建js Array的方法,以 ...

  6. SVN与TFS自动同步脚本(很实用)

    一直都在园子里看文章,因为各种原因懒得写文章.最近稍得空闲,把这几天的工作成果分享一下. 因为工作需要,开发人员使用Qt进行系统移动端的开发,Qt的版本控制却不提供连接TFS的设置,只有使用svn.没 ...

  7. 洛谷 P1216 [USACO1.5]数字三角形 Number Triangles(水题日常)

    题目描述 观察下面的数字金字塔. 写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大.每一步可以走到左下方的点也可以到达右下方的点. 7 3 8 8 1 0 2 7 4 4 4 5 ...

  8. 如何修改开发板主频--迅为iMX6UL开发板

    平台:iMX6UL开发板           iMX6UL开发板 可以在文件系统中通过命令修改 CPU 运行的主频.如下图所示,使用命令“cat /sys/devices/system/cpu/cpu ...

  9. toplink

    TopLink,是位居第一的Java对象关系可持续性体系结构,原署WebGain公司的产品,后被Oracle收购,并重新包装为Oracle AS TopLink.TOPLink为在关系数据库表中存储 ...

  10. 打开或关闭CD_ROM

    实现效果: 知识运用: API函数 mciSendString //函数用来向媒体控制接口设备发送命令  声明如下 [DllImport("winmm.dll",EntryPoin ...