[codeforces538E]Demiurges Play Again
[codeforces538E]Demiurges Play Again
试题描述
Demiurges Shambambukli and Mazukta love to watch the games of ordinary people. Today, they noticed two men who play the following game.
There is a rooted tree on n nodes, m of which are leaves (a leaf is a nodes that does not have any children), edges of the tree are directed from parent to children. In the leaves of the tree integers from 1 to m are placed in such a way that each number appears exactly in one leaf.
Initially, the root of the tree contains a piece. Two players move this piece in turns, during a move a player moves the piece from its current nodes to one of its children; if the player can not make a move, the game ends immediately. The result of the game is the number placed in the leaf where a piece has completed its movement. The player who makes the first move tries to maximize the result of the game and the second player, on the contrary, tries to minimize the result. We can assume that both players move optimally well.
Demiurges are omnipotent, so before the game they can arbitrarily rearrange the numbers placed in the leaves. Shambambukli wants to rearrange numbers so that the result of the game when both players play optimally well is as large as possible, and Mazukta wants the result to be as small as possible. What will be the outcome of the game, if the numbers are rearranged by Shambambukli, and what will it be if the numbers are rearranged by Mazukta? Of course, the Demiurges choose the best possible option of arranging numbers.
输入
The first line contains a single integer n — the number of nodes in the tree (1 ≤ n ≤ 2·105).
Each of the next n - 1 lines contains two integers ui and vi (1 ≤ ui, vi ≤ n) — the ends of the edge of the tree; the edge leads from node ui to node vi. It is guaranteed that the described graph is a rooted tree, and the root is the node 1.
输出
Print two space-separated integers — the maximum possible and the minimum possible result of the game.
输入示例
输出示例
数据规模及约定
见“输入”
题解
树形 dp。设 mn(u, 0) 表示对于以节点 u 为根的子树中所有叶子从 1 开始编号,当前轮到后手(即希望最终答案最小的人)走所能得到的最小编号;mn(u, 1) 表示轮到先手走所能得到的最小编号。那么显然,因为后手一定是选择下一步最小的儿子走;
,我们要让先手选到最大值最小,可以把每个子树 v 中小于等于 mn(v, 0) 的编号拿出来密密地排列,大于 mn(v, 0) 的部分统统扔到后面以免它们占位置。
对于求最大值的情况,做法类似。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 200010
#define maxm 400010
#define oo 2147483647 int n, m, head[maxn], next[maxm], to[maxm];
void AddEdge(int a, int b) {
to[++m] = b; next[m] = head[a]; head[a] = m;
swap(a, b);
to[++m] = b; next[m] = head[a]; head[a] = m;
return ;
}
int cntl, mn[2][maxn], mx[2][maxn];
void calc(int u, int fa) {
bool has = 0;
for(int e = head[u]; e; e = next[e]) if(to[e] != fa)
has = 1, calc(to[e], u);
if(!has) cntl++, mn[0][u] = mn[1][u] = mx[0][u] = mx[1][u] = 1;
return ;
} void dp(int u, int fa) {
if(mn[1][u]) return ;
mn[1][u] = 0; mn[0][u] = oo;
mx[1][u] = oo; mx[0][u] = 0;
for(int e = head[u]; e; e = next[e]) if(to[e] != fa) {
dp(to[e], u);
mn[1][u] += mn[0][to[e]],
mn[0][u] = min(mn[0][u], mn[1][to[e]]),
mx[1][u] = min(mx[1][u], mx[0][to[e]]),
mx[0][u] += mx[1][to[e]];
}
// printf("%d: %d %d %d %d\n", u, mn[1][u], mn[0][u], mx[1][u], mx[0][u]);
return ;
} int main() {
n = read();
for(int i = 1; i < n; i++) {
int a = read(), b = read();
AddEdge(a, b);
} calc(1, 0);
dp(1, 0); printf("%d %d\n", cntl + 1 - mx[1][1], mn[1][1]); return 0;
}
[codeforces538E]Demiurges Play Again的更多相关文章
- Codeforces Round #300 E - Demiurges Play Again
E - Demiurges Play Again 感觉这种类型的dp以前没遇到过... 不是很好想.. dp[u] 表示的是以u为子树进行游戏得到的值是第几大的. #include<bits/s ...
- Codeforces 538E Demiurges Play Again(博弈DP)
http://codeforces.com/problemset/problem/538/E 题目大意: 给出一棵树,叶子节点上都有一个值,从1-m.有两个人交替从根选择道路,先手希望到达的叶子节点尽 ...
- 【codeforces 538E】Demiurges Play Again
[题目链接]:http://codeforces.com/problemset/problem/538/E [题意] 给你一棵树; 有两个人,分别从根节点开始,往叶子节点的方向走; 每个人每次只能走一 ...
- Codeforces 刷水记录
Codeforces-566F 题目大意:给出一个有序数列a,这个数列中每两个数,如果满足一个数能整除另一个数,则这两个数中间是有一条边的,现在有这样的图,求最大联通子图. 题解:并不需要把图搞出来, ...
- Codeforces Round #300 解题报告
呜呜周日的时候手感一直很好 代码一般都是一遍过编译一遍过样例 做CF的时候前三题也都是一遍过Pretest没想着去检查... 期间姐姐提醒说有Announcement也自信不去看 呜呜然后就FST了 ...
随机推荐
- RHEL 6.5---SVN服务实现过程
主机名 IP地址 master 192.168.30.130 slave 192.168.30.131 安装 [root@master ~]# yum install -y subversion h ...
- WPF学习12:基于MVVM Light 制作图形编辑工具(3)
本文是WPF学习11:基于MVVM Light 制作图形编辑工具(2)的后续 这一次的目标是完成 两个任务. 本节完成后的效果: 本文分为三个部分: 1.对之前代码不合理的地方重新设计. 2.图形可选 ...
- [转]Java中实现自定义的注解处理器
Java中实现自定义的注解处理器(Annotation Processor) 置顶2016年07月25日 19:42:49 阅读数:9877 在之前的<简单实现ButterKnife的注解功能& ...
- 【转】java序列化一定要应该注意的6个事项!
1.如果子类实现Serializable接口而父类未实现时,父类不会被序列化,但此时父类必须有个无参构造方法,否则会抛InvalidClassException异常. 2.静态变量不会被序列化,那是类 ...
- 基于udp协议的套接字及udp协议粘包问题
udp协议的套接字 udp协议传输 服务端和客户端没有建立连接一说. import socket # 总结一下基础工作流程:服务端生成套接字并绑定ip_port,进入数据传输循环,服务端接受客户端发 ...
- php同时查询两个表的数据
业务环境,表一 会员等级表, 表二会员表, 有一个字段是相同的 会员等级ID level 在会员的显示页面要直接显示会员的会员等级名称,不是等级ID. 1.同时查询两个表 2.表设置别名, selec ...
- centos7 搭建双网卡bond1(主备模式)实例
前景须知: 在redhat6 中网卡叫bond,在redhat7及centos7中改名team,此处只记录centos7中双网卡主备搭建过程. 应用情景:实现网络的高可用,防止一条网线或交换机故障影响 ...
- how to make a function from using global var to not using it
let say, we want to find the bottom left node in a tree.one way to do it is using global vars: /** * ...
- cocos creator 小记
一个游戏场景有若干个节点组成,这些包括渲染节点,UI节点. 这里弱化了Layer层的概念. 一个游戏由若干个场景组件. 每个节点由若干个组件和若干子节点组成. 例如UI节点中的 按钮节点.子节点有 ...
- C++ 类中的static成员的初始化和特点
C++ 类中的static成员的初始化和特点 #include <iostream> using namespace std; class Test { public: Test() : ...