描述

输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 
要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一个点沿着某条路径出发, 又回到了自己, 而且所经过的边上的权和小于0, 就说这条路是一个负权回路.
如果存在负权回路, 只输出一行-1;
如果不存在负权回路, 再求出一个点S(1 <= S <= N)到每个点的最短路的长度. 约定: S到S的距离为0, 如果S与这个点不连通, 则输出NoPath.

格式

输入格式

第一行: 点数N(2 <= N <= 1,000), 边数M(M <= 100,000), 源点S(1 <= S <= N);
以下M行, 每行三个整数a, b, c表示点a, b(1 <= a, b <= N)之间连有一条边, 权值为c(-1,000,000 <= c <= 1,000,000)

输出格式

如果存在负权环, 只输出一行-1, 否则按以下格式输出
共N行, 第i行描述S点到点i的最短路: 
如果S与i不连通, 输出NoPath;
如果i = S, 输出0;
其他情况输出S到i的最短路的长度.

样例1

样例输入1[复制]

6 8 1
1 3 4
1 2 6
3 4 -7
6 4 2
2 4 5
3 6 3
4 5 1
3 5 4

样例输出1[复制]

0
6
4
-3
-2
7

限制

Test5 5秒
其余 1秒

/*
一个水题,水了一下午了才水过去,陷阱太多了
这不是普通的spfa的模板,因为有些点可能起点没有连通,但是却构成了环,应该输出-1,
却输出了一堆 NoPath,所以应该设一个inp数组,记录某个点有没有出现过,然后把所有
没有出现过的点再spfa一遍。
*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#define N 1010
#define M 100010
#define INF 10000000
#define LL long long
using namespace std;
int head[N],vis[N],num[N],inp[N],n,m,flag;
LL dis[N],dis1[N];
struct node
{
int v,pre,t;
};node e[M];
queue<int> q;
int read()
{
char c=getchar();int num=,flag=;
while(c<''||c>''){if(c=='-')flag=-;c=getchar();}
while(c>=''&&c<=''){num=num*+c-'';c=getchar();}
return num*flag;
}
void add(int cnt,int x,int y,int z)
{
e[cnt].v=y;
e[cnt].t=z;
e[cnt].pre=head[x];
head[x]=cnt;
}
void spfa(int s,LL d[])
{
while(!q.empty())q.pop();
vis[s]=;
inp[s]=;
q.push(s);
d[s]=;
while(!q.empty())
{
int x=q.front();
q.pop();
vis[x]=;
for(int i=head[x];i;i=e[i].pre)
{
int y=e[i].v;
if(d[y]>d[x]+(LL)e[i].t)
{
d[y]=d[x]+(LL)e[i].t;
if(!vis[y])
{
inp[y]=;
vis[y]=;
num[y]++;
q.push(y);
if(num[y]>=n||d[s]<)
{
flag=;
return;
}
}
}
}
}
}
int main()
{
n=read();m=read();int s=read();
for(int i=;i<=n;i++)dis[i]=INF;
for(int i=;i<=m;i++)
{
int x=read(),y=read(),z=read();
add(i,x,y,z);
}
spfa(s,dis);
for(int i=;i<=n;i++)
if(!inp[i])
{
if(flag){printf("-1");return ;}
spfa(i,dis1);
}
if(flag){printf("-1");return ;}
for(int i=;i<=n;i++)
if(dis[i]<dis[])cout<<dis[i]<<endl;
else printf("NoPath\n");
return ;
}

Easy sssp(vijos 1053)的更多相关文章

  1. vijosP1053 Easy sssp

    vijosP1053 Easy sssp 链接:https://vijos.org/p/1053 [思路] SPFA. 题目中的陷阱比较多,但是只要中规中矩的写SPFA诸如:s与负圈不相连,有重边的情 ...

  2. Easy sssp(spfa)(负环)

    vijos    1053    Easy sssp 方法:用spfa判断是否存在负环 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,00 ...

  3. Easy sssp

    Easy sssp 时间限制: 1 Sec  内存限制: 128 MB提交: 103  解决: 20[提交][状态][讨论版] 题目描述 输入数据给出一个有N(2  < =  N  < = ...

  4. vijos 1053 Easy sssp

    描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...

  5. Vijos——T1053 Easy sssp

    https://vijos.org/p/1053 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程 ...

  6. SPFA_YZOI 1662: Easy sssp

    题目描述 输入数据给出一个有N(2  < =  N  < =  1,000)个节点,M(M  < =  100,000)条边的带权有向图.  要求你写一个程序,  判断这个有向图中是 ...

  7. Vijos1053 Easy sssp[spfa 负环]

    描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...

  8. Loj10086 Easy SSSP

      试题描述 输入数据给出一个有 N 个节点,M 条边的带权有向图.要求你写一个程序,判断这个有向图中是否存在负权回路.如果从一个点沿着某条路径出发,又回到了自己,而且所经过的边上的权和小于 0,就说 ...

  9. Easy sssp(spfa判负环与求最短路)

    #include<bits/stdc++.h> using namespace std; int n,m,s; struct node{ int to,next,w; }e[]; bool ...

随机推荐

  1. 前端之CSS创建的样式

    CSS即层叠样式表,在创建时有以下几种样式: 1.内联样式(行内样式.行间样式): <标记 style=“属性:属性值:”></标记> 2.内部样式(嵌入式样式): <s ...

  2. 【学习笔记】block、inline(替换元素、不可替换元素)、inline-block的理解

    本文转载 总体概念 block和inline这两个概念是简略的说法,完整确切的说应该是 block-level elements (块级元素) 和 inline elements (内联元素).blo ...

  3. <meta>详解

    一.元数据和<meta> 元数据是描述以提供关于其他数据的数据,在<meta>中,html document是被描述的数据,meta标签中包括的数据是描述html docume ...

  4. Backbone.js之Todo源码浅析

    相信每个接触了解过backbone的人都知道todo,网上的关于它的分析教程也都分析乱了.但是,知识只有自己学习领悟才是自己的,话不多说,正文开始. 在分析todo的源码之前,首先我们要知道todo具 ...

  5. knockout Observable Array(监控数组)

    Observable Array(监控数组)的作用 列表操作是经常会遇到的一个场景,使用监控数组,你可以: 保存列表对象,并且使用Ko提供的丰富的API操作列表元素(支持内建js Array的方法,以 ...

  6. 【HEVC帧间预测论文】P1.5 Fast Coding Unit Size Selection for HEVC based on Bayesian Decision Rule

    Fast Coding Unit Size Selection for HEVC based on Bayesian Decision Rule <HEVC标准介绍.HEVC帧间预测论文笔记&g ...

  7. Java遍历HashMap并修改(remove)

    遍历HashMap的方法有多种,比如通过获取map的keySet, entrySet, iterator之后,都可以实现遍历,然而如果在遍历过程中对map进行读取之外的操作则需要注意使用的遍历方式和操 ...

  8. dzzoffice网盘应用有着最强大的团队、企业私有网盘功能,并且全开源无功能限制。

    企业,团队多人使用dzzoffice的网盘应用,灵活并且功能强大. 支持个人网盘,机构部门,群组,并可根据使用情况开启关闭.例如可只开启群组功能.   可通过后缀,标签自定义类型进行快捷筛选   全面 ...

  9. toplink

    TopLink,是位居第一的Java对象关系可持续性体系结构,原署WebGain公司的产品,后被Oracle收购,并重新包装为Oracle AS TopLink.TOPLink为在关系数据库表中存储 ...

  10. html upload_file 对象(2018/02/26)工作收获

    php.ini中可以设置上传文件的大小,如果超过设置大小,上传失败.$_File 数组当中接受到的文件对象size为0