Easy sssp(vijos 1053)
描述
输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图.
要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一个点沿着某条路径出发, 又回到了自己, 而且所经过的边上的权和小于0, 就说这条路是一个负权回路.
如果存在负权回路, 只输出一行-1;
如果不存在负权回路, 再求出一个点S(1 <= S <= N)到每个点的最短路的长度. 约定: S到S的距离为0, 如果S与这个点不连通, 则输出NoPath.
格式
输入格式
第一行: 点数N(2 <= N <= 1,000), 边数M(M <= 100,000), 源点S(1 <= S <= N);
以下M行, 每行三个整数a, b, c表示点a, b(1 <= a, b <= N)之间连有一条边, 权值为c(-1,000,000 <= c <= 1,000,000)
输出格式
如果存在负权环, 只输出一行-1, 否则按以下格式输出
共N行, 第i行描述S点到点i的最短路:
如果S与i不连通, 输出NoPath;
如果i = S, 输出0;
其他情况输出S到i的最短路的长度.
样例1
限制
Test5 5秒
其余 1秒
/*
一个水题,水了一下午了才水过去,陷阱太多了
这不是普通的spfa的模板,因为有些点可能起点没有连通,但是却构成了环,应该输出-1,
却输出了一堆 NoPath,所以应该设一个inp数组,记录某个点有没有出现过,然后把所有
没有出现过的点再spfa一遍。
*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#define N 1010
#define M 100010
#define INF 10000000
#define LL long long
using namespace std;
int head[N],vis[N],num[N],inp[N],n,m,flag;
LL dis[N],dis1[N];
struct node
{
int v,pre,t;
};node e[M];
queue<int> q;
int read()
{
char c=getchar();int num=,flag=;
while(c<''||c>''){if(c=='-')flag=-;c=getchar();}
while(c>=''&&c<=''){num=num*+c-'';c=getchar();}
return num*flag;
}
void add(int cnt,int x,int y,int z)
{
e[cnt].v=y;
e[cnt].t=z;
e[cnt].pre=head[x];
head[x]=cnt;
}
void spfa(int s,LL d[])
{
while(!q.empty())q.pop();
vis[s]=;
inp[s]=;
q.push(s);
d[s]=;
while(!q.empty())
{
int x=q.front();
q.pop();
vis[x]=;
for(int i=head[x];i;i=e[i].pre)
{
int y=e[i].v;
if(d[y]>d[x]+(LL)e[i].t)
{
d[y]=d[x]+(LL)e[i].t;
if(!vis[y])
{
inp[y]=;
vis[y]=;
num[y]++;
q.push(y);
if(num[y]>=n||d[s]<)
{
flag=;
return;
}
}
}
}
}
}
int main()
{
n=read();m=read();int s=read();
for(int i=;i<=n;i++)dis[i]=INF;
for(int i=;i<=m;i++)
{
int x=read(),y=read(),z=read();
add(i,x,y,z);
}
spfa(s,dis);
for(int i=;i<=n;i++)
if(!inp[i])
{
if(flag){printf("-1");return ;}
spfa(i,dis1);
}
if(flag){printf("-1");return ;}
for(int i=;i<=n;i++)
if(dis[i]<dis[])cout<<dis[i]<<endl;
else printf("NoPath\n");
return ;
}
Easy sssp(vijos 1053)的更多相关文章
- vijosP1053 Easy sssp
vijosP1053 Easy sssp 链接:https://vijos.org/p/1053 [思路] SPFA. 题目中的陷阱比较多,但是只要中规中矩的写SPFA诸如:s与负圈不相连,有重边的情 ...
- Easy sssp(spfa)(负环)
vijos 1053 Easy sssp 方法:用spfa判断是否存在负环 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,00 ...
- Easy sssp
Easy sssp 时间限制: 1 Sec 内存限制: 128 MB提交: 103 解决: 20[提交][状态][讨论版] 题目描述 输入数据给出一个有N(2 < = N < = ...
- vijos 1053 Easy sssp
描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...
- Vijos——T1053 Easy sssp
https://vijos.org/p/1053 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程 ...
- SPFA_YZOI 1662: Easy sssp
题目描述 输入数据给出一个有N(2 < = N < = 1,000)个节点,M(M < = 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是 ...
- Vijos1053 Easy sssp[spfa 负环]
描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...
- Loj10086 Easy SSSP
试题描述 输入数据给出一个有 N 个节点,M 条边的带权有向图.要求你写一个程序,判断这个有向图中是否存在负权回路.如果从一个点沿着某条路径出发,又回到了自己,而且所经过的边上的权和小于 0,就说 ...
- Easy sssp(spfa判负环与求最短路)
#include<bits/stdc++.h> using namespace std; int n,m,s; struct node{ int to,next,w; }e[]; bool ...
随机推荐
- iOS之tableView性能优化/tableView滑动卡顿?
本文围绕以下几点展开tableView性能优化的论述? 1.UITableViewCell重用机制? 2.tableView滑动为什么会卡顿? 3.优化方法? 4.总结 1.UITableViewCe ...
- 浏览器上传文件,存到oracle数据库示例。
这里只贴了一张图, 旨在说明,思路: 将文件转换为字节,存入数据库的类型为 Blob字段. 当下载的时候,从数据库读出来通过流写回浏览器即可 文件的下载. 从数据库读出来通过流写回浏览器即可
- ssl证书过期问题解决
1,ssl证书失效现象 小程序debug有如下证书无效信息: 浏览器访问https://ic-park.net:30001/indoornav/callFunction1.php 提示证书风险. 2, ...
- 使用Jenkins进行android项目的自动构建(6)
之前已经介绍过使用Maven做构建,在来介绍一下Gralde的自动化构建. 什么是Gralde?官方的解释是 Gradle is an open source build automation sys ...
- NPM、nodeJS安装,grunt自动化构建工具学习总结
一:安装 npm是随nodeJs安装包一起安装的包管理工具,能解决NodeJS代码部署上的很多问题: 常见的使用场景有以下几种: 允许用户从NPM服务器下载别人编写的第三方包到本地使用. 允许用户从N ...
- 开发笔记 - 解决font-awesome等图标在浏览器中的兼容问题
今天在写前端页面的时候,觉得font-awesome简单实用就上手试了一下,因为font-awesome图标库甚为强大,我就在其css上多做了一些尝试,这一尝试发现了一个致命的问题,当我对i标签进行统 ...
- socket是什么?协议栈操作的抽象
http://www.cnblogs.com/airtcp/p/5230161.html TCP/IP只是一个协议栈,就像操作系统的运行机制一样,必须要具体实现,同时还要提供对外的操作接口.就像操作系 ...
- mybatis中存储过程的调用
dao层 // 调用存储过程 void callProcedureGrantEarnings(@Param("params") Map<String,Object> p ...
- Logisim的使用
准备 通过Logisim的官网下载适合你机器的Logisim的软件,启动Logisim应用程序(Logisim可能有点bug,如果程序运行诡异,可能内部已经奔溃,最好的解决方法是重新启动它). Log ...
- QTreeWidgetItem封装
#include "qtreewighthelper.h" QTreeWidgetItem* AddQTreeWidgetItemChild(QTreeWidgetItem* pa ...