描述

输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 
要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一个点沿着某条路径出发, 又回到了自己, 而且所经过的边上的权和小于0, 就说这条路是一个负权回路.
如果存在负权回路, 只输出一行-1;
如果不存在负权回路, 再求出一个点S(1 <= S <= N)到每个点的最短路的长度. 约定: S到S的距离为0, 如果S与这个点不连通, 则输出NoPath.

格式

输入格式

第一行: 点数N(2 <= N <= 1,000), 边数M(M <= 100,000), 源点S(1 <= S <= N);
以下M行, 每行三个整数a, b, c表示点a, b(1 <= a, b <= N)之间连有一条边, 权值为c(-1,000,000 <= c <= 1,000,000)

输出格式

如果存在负权环, 只输出一行-1, 否则按以下格式输出
共N行, 第i行描述S点到点i的最短路: 
如果S与i不连通, 输出NoPath;
如果i = S, 输出0;
其他情况输出S到i的最短路的长度.

样例1

样例输入1[复制]

6 8 1
1 3 4
1 2 6
3 4 -7
6 4 2
2 4 5
3 6 3
4 5 1
3 5 4

样例输出1[复制]

0
6
4
-3
-2
7

限制

Test5 5秒
其余 1秒

/*
一个水题,水了一下午了才水过去,陷阱太多了
这不是普通的spfa的模板,因为有些点可能起点没有连通,但是却构成了环,应该输出-1,
却输出了一堆 NoPath,所以应该设一个inp数组,记录某个点有没有出现过,然后把所有
没有出现过的点再spfa一遍。
*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#define N 1010
#define M 100010
#define INF 10000000
#define LL long long
using namespace std;
int head[N],vis[N],num[N],inp[N],n,m,flag;
LL dis[N],dis1[N];
struct node
{
int v,pre,t;
};node e[M];
queue<int> q;
int read()
{
char c=getchar();int num=,flag=;
while(c<''||c>''){if(c=='-')flag=-;c=getchar();}
while(c>=''&&c<=''){num=num*+c-'';c=getchar();}
return num*flag;
}
void add(int cnt,int x,int y,int z)
{
e[cnt].v=y;
e[cnt].t=z;
e[cnt].pre=head[x];
head[x]=cnt;
}
void spfa(int s,LL d[])
{
while(!q.empty())q.pop();
vis[s]=;
inp[s]=;
q.push(s);
d[s]=;
while(!q.empty())
{
int x=q.front();
q.pop();
vis[x]=;
for(int i=head[x];i;i=e[i].pre)
{
int y=e[i].v;
if(d[y]>d[x]+(LL)e[i].t)
{
d[y]=d[x]+(LL)e[i].t;
if(!vis[y])
{
inp[y]=;
vis[y]=;
num[y]++;
q.push(y);
if(num[y]>=n||d[s]<)
{
flag=;
return;
}
}
}
}
}
}
int main()
{
n=read();m=read();int s=read();
for(int i=;i<=n;i++)dis[i]=INF;
for(int i=;i<=m;i++)
{
int x=read(),y=read(),z=read();
add(i,x,y,z);
}
spfa(s,dis);
for(int i=;i<=n;i++)
if(!inp[i])
{
if(flag){printf("-1");return ;}
spfa(i,dis1);
}
if(flag){printf("-1");return ;}
for(int i=;i<=n;i++)
if(dis[i]<dis[])cout<<dis[i]<<endl;
else printf("NoPath\n");
return ;
}

Easy sssp(vijos 1053)的更多相关文章

  1. vijosP1053 Easy sssp

    vijosP1053 Easy sssp 链接:https://vijos.org/p/1053 [思路] SPFA. 题目中的陷阱比较多,但是只要中规中矩的写SPFA诸如:s与负圈不相连,有重边的情 ...

  2. Easy sssp(spfa)(负环)

    vijos    1053    Easy sssp 方法:用spfa判断是否存在负环 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,00 ...

  3. Easy sssp

    Easy sssp 时间限制: 1 Sec  内存限制: 128 MB提交: 103  解决: 20[提交][状态][讨论版] 题目描述 输入数据给出一个有N(2  < =  N  < = ...

  4. vijos 1053 Easy sssp

    描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...

  5. Vijos——T1053 Easy sssp

    https://vijos.org/p/1053 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程 ...

  6. SPFA_YZOI 1662: Easy sssp

    题目描述 输入数据给出一个有N(2  < =  N  < =  1,000)个节点,M(M  < =  100,000)条边的带权有向图.  要求你写一个程序,  判断这个有向图中是 ...

  7. Vijos1053 Easy sssp[spfa 负环]

    描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...

  8. Loj10086 Easy SSSP

      试题描述 输入数据给出一个有 N 个节点,M 条边的带权有向图.要求你写一个程序,判断这个有向图中是否存在负权回路.如果从一个点沿着某条路径出发,又回到了自己,而且所经过的边上的权和小于 0,就说 ...

  9. Easy sssp(spfa判负环与求最短路)

    #include<bits/stdc++.h> using namespace std; int n,m,s; struct node{ int to,next,w; }e[]; bool ...

随机推荐

  1. git常用命令图解 & 常见错误

    Git 常用命令 基本命令 git clone.这是一种较为简单的初始化方式,当你已经有一个远程的Git版本库,只需要在本地克隆一份 git clone git://github.com/someon ...

  2. Bean with name 'xxxService' has been injected into other beans [xxxServiceA,xxxServiceB] in its raw version as part of a circular reference, but has eventually been wrapped

    启动项目,通过@Autowired注入对象,出现循环依赖,导致项目启动失败,具体报错信息如下: Exception encountered during context initialization ...

  3. IOS数组

    /*******************************************************************************************NSArray ...

  4. 51nod 1097 拼成最小的数

    基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 设有n个正整数,将它们联接成一排,组成一个最小的多位整数.     例如: n=2时,2个整数32, ...

  5. Traceroute侦测主机到目的主机之间所经路由情况的重要工具

    ICMP的应用--Traceroute Traceroute是用来侦测主机到目的主机之间所经路由情况的重要工具,也是最便利的工具.前面说到,尽管ping工具也可以进行侦测,但是,因为ip头的限制,pi ...

  6. Zotero文献管理神器使用

    为什么使用Zotero管理论文? 1.可以从网上剪藏 2.可以查询 3.有作者 标题 期刊 索引 4.word自动生成论文索引 把pdf文件导入Zotero 按住ctrl+shift拖动pdf文件,就 ...

  7. c语言 错误记录

    1.预处理错误 #include <>   //系统内部的 #include ""   // 自定义的 遇到 not find------解决方案:gcc -I 跟查找 ...

  8. iview table 普通表格样式

    iview table 普通表格样式 https://run.iviewui.com/UvLFPMb0 <template> <table> <thead> < ...

  9. 【转】C#的版本

    这年头啥东东都喜欢过段时间整个啥新版本出来.汽车,手机如此,软件就更是如此了啊.比如啥Iphone 4,Iphone 5,Windows 8,Oracle 12C,SQL Server 2010. 版 ...

  10. 测试常用的linux命令

    一.系统 1.halt:         关机   poweroff: 关机 2.reboot:     重启 二.处理目录和文件的命令 1.ll:     显示文件详细信息 ls:    显示文件目 ...