不多说,直接上干货!

1、 Cube的物理模型

                        Cube物理模型

  如上图所示,一个常用的3维立方体,包含:时间、地点、产品。假如data cell 中存放的是产量,则我们可以根据时间、地点、产品来确定产量,同时也可以根据时间、地点来确定所有产品的总产量等。
  Apache Kylin就将所有(时间、地点、产品)的各种组合实现算出来,data cell 中存放度量,其中每一种组合都称为cuboid。估n维的数据最多有2^n个cuboid,不过Kylin通过设定维度的种类,可以减少cuboid的数目。

 
 

2 、Cube构建算法介绍

2.1 逐层算法(Layer Cubing)

  我们知道,一个N维的Cube,是由1个N维子立方体、N个(N-1)维子立方体、N*(N-1)/2个(N-2)维子立方体、......、N个1维子立方体和1个0维子立方体构成,总共有2^N个子立方体组成,在逐层算法中,按维度数逐层减少来计算,每个层级的计算(除了第一层,它是从原始数据聚合而来),是基于它上一层级的结果来计算的。
比如,[Group by A, B]的结果,可以基于[Group by A, B, C]的结果,通过去掉C后聚合得来的;这样可以减少重复计算;当 0维度Cuboid计算出来的时候,整个Cube的计算也就完成了。

            

                            逐层算法

  如上图所示,展示了一个4维的Cube构建过程。
  此算法的Mapper和Reducer都比较简单。Mapper以上一层Cuboid的结果(Key-Value对)作为输入。由于Key是由各维度值拼接在一起,从其中找出要聚合的维度,去掉它的值成新的Key,并对Value进行操作,然后把新Key和Value输出,进而Hadoop MapReduce对所有新Key进行排序、洗牌(shuffle)、再送到Reducer处;Reducer的输入会是一组有相同Key的Value集合,对这些Value做聚合计算,再结合Key输出就完成了一轮计算。
  每一轮的计算都是一个MapReduce任务,且串行执行; 一个N维的Cube,至少需要N次MapReduce Job。

 

算法优点

  • 此算法充分利用了MapReduce的能力,处理了中间复杂的排序和洗牌工作,故而算法代码清晰简单,易于维护;
  • 受益于Hadoop的日趋成熟,此算法对集群要求低,运行稳定;在内部维护Kylin的过程中,很少遇到在这几步出错的情况;即便是在Hadoop集群比较繁忙的时候,任务也能完成。

算法缺点

  • 当Cube有比较多维度的时候,所需要的MapReduce任务也相应增加;由于Hadoop的任务调度需要耗费额外资源,特别是集群较庞大的时候,反复递交任务造成的额外开销会相当可观;
  • 由于Mapper不做预聚合,此算法会对Hadoop MapReduce输出较多数据; 虽然已经使用了Combiner来减少从Mapper端到Reducer端的数据传输,所有数据依然需要通过Hadoop MapReduce来排序和组合才能被聚合,无形之中增加了集群的压力;
  • 对HDFS的读写操作较多:由于每一层计算的输出会用做下一层计算的输入,这些Key-Value需要写到HDFS上;当所有计算都完成后,Kylin还需要额外的一轮任务将这些文件转成HBase的HFile格式,以导入到HBase中去;
  • 总体而言,该算法的效率较低,尤其是当Cube维度数较大的时候;时常有用户问,是否能改进Cube算法,缩短时间。
 
 
 
2 .2 快速Cube算法(Fast Cubing)

  快速Cube算法(Fast Cubing)是麒麟团队对新算法的一个统称,它还被称作“逐段”(By Segment) 或“逐块”(By Split) 算法。

  该算法的主要思想是,对Mapper所分配的数据块,将它计算成一个完整的小Cube 段(包含所有Cuboid);每个Mapper将计算完的Cube段输出给Reducer做合并,生成大Cube,也就是最终结果;图2解释了此流程。

            

                          快速Cube算法

与旧算法相比,快速算法主要有两点不同

  • Mapper会利用内存做预聚合,算出所有组合;Mapper输出的每个Key都是不同的,这样会减少输出到Hadoop MapReduce的数据量,Combiner也不再需要;
  • 一轮MapReduce便会完成所有层次的计算,减少Hadoop任务的调配。

子立方体生成树的遍历
  值得一提的还有一个改动,就是子立方体生成树(Cuboid Spanning Tree)的遍历次序;在旧算法中,Kylin按照层级,也就是广度优先遍历(Broad First Search)的次序计算出各个Cuboid;在快速Cube算法中,Mapper会按深度优先遍历(Depth First Search)来计算各个Cuboid。深度优先遍历是一个递归方法,将父Cuboid压栈以计算子Cuboid,直到没有子Cuboid需要计算时才出栈并输出给Hadoop;最多需要暂存N个Cuboid,N是Cube维度数。
采用DFS,是为了兼顾CPU和内存:

  • 从父Cuboid计算子Cuboid,避免重复计算;
  • 只压栈当前计算的Cuboid的父Cuboid,减少内存占用。

                

                •            立方体生成数的遍历过程
                   
                   
                   

  上图是一个四维Cube的完整生成树;按照DFS的次序,在0维Cuboid 输出前的计算次序是 ABCD -> BCD -> CD -> D -> , ABCD, BCD, CD和D需要被暂存;在被输出后,D可被输出,内存得到释放;在C被计算并输出后,CD就可以被输出; ABCD最后被输出。

 
 
 
 

4.3 、Cube构建流程

                        
                                Cube构建流程图
 
 
 
 
 
 

主要步骤如下:

  1. 构建一个中间平表(Hive Table):将Model中的fact表和look up表构建成一个大的Flat Hive Table。
  2. 重新分配Flat Hive Tables。
  3. 从事实表中抽取维度的Distinct值。
  4. 对所有维度表进行压缩编码,生成维度字典。
  5. 计算和统计所有的维度组合,并保存,其中,每一种维度组合,称为一个Cuboid。
  6. 创建HTable。
  7. 构建最基础的Cuboid数据。
  8. 利用算法构建N维到0维的Cuboid数据。
  9. 构建Cube。
  10. 将Cuboid数据转换成HFile。
  11. 将HFile直接加载到HBase Table中。
  12. 更新Cube信息。
  13. 清理Hive。
 

Apache Kylin Cube 的构建过程的更多相关文章

  1. Apache Kylin Cube 的存储

    不多说,直接上干货! 简单的说Cuboid的维度会映射为HBase的Rowkey,Cuboid的指标会映射为HBase的Value. Cube映射成HBase存储 如上图原始表所示:Hive表有两个维 ...

  2. KIP-5:Apache Kylin深度集成Hudi

    Q1. What are you trying to do? Articulate your objectives using absolutely no jargon. Q2. What probl ...

  3. Kylin Cube构建过程优化

    原文地址:https://kylin.apache.org/docs16/howto/howto_optimize_build.html Kylin将一个cube的build过程分解为若干个子步骤,然 ...

  4. 大数据分析神兽麒麟(Apache Kylin)

    1.Apache Kylin是什么? 在现在的大数据时代,越来越多的企业开始使用Hadoop管理数据,但是现有的业务分析工具(如Tableau,Microstrategy等)往往存在很大的局限,如难以 ...

  5. 大数据分析界的“神兽”Apache Kylin有多牛?【转】

    本文作者:李栋,来自Kyligence公司,也是Apache Kylin Committer & PMC member,在加入Kyligence之前曾就职于eBay.微软. 1.Apache ...

  6. Apache Kylin大数据分析平台的演进

    转:http://mt.sohu.com/20160628/n456602429.shtml 我是来自Kyligence的李扬,是上海Kyligence的联合创始人兼CTO.今天我主要来和大家分享一下 ...

  7. 《基于Apache Kylin构建大数据分析平台》

    Kyligence联合创始人兼CEO,Apache Kylin项目管理委员会主席(PMC Chair)韩卿 武汉市云升科技发展有限公司董事长,<智慧城市-大数据.物联网和云计算之应用>作者 ...

  8. kylin cube测试时,报错:org.apache.hadoop.security.AccessControlException: Permission denied: user=root, access=WRITE, inode="/user":hdfs:supergroup:drwxr-xr-x

    异常: org.apache.hadoop.security.AccessControlException: Permission denied: user=root, access=WRITE, i ...

  9. 【转】使用Apache Kylin搭建企业级开源大数据分析平台

    http://www.thebigdata.cn/JieJueFangAn/30143.html 本篇文章整理自史少锋4月23日在『1024大数据技术峰会』上的分享实录:使用Apache Kylin搭 ...

随机推荐

  1. nodejs 实战

    使用 Koa + MongoDB + Redis 搭建论坛系统 「新手向」koa2从起步到填坑 基于koa2和react的PC端脚手架 一键生成koa/koa2项目: nodejs原生,express ...

  2. iOS UIView控件的常用属性和方法的总结

    一 UIVIew 常见属性1.frame 位置和尺寸(以父控件的左上角为原点(0,0))2.center 中点 (以父控件的左上角为原点(0,0))3.bounds 位置和尺寸(以自己的左上角为原点 ...

  3. bzoj2436: [Noi2011]Noi嘉年华

    我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...

  4. codeforces 435 B. Pasha Maximizes 解题报告

    题目链接:http://codeforces.com/problemset/problem/435/B 题目意思:给出一个最多为18位的数,可以通过对相邻两个数字进行交换,最多交换 k 次,问交换 k ...

  5. hdu-5720 Wool(区间并+扫描线)

    题目链接: Wool Time Limit: 8000/4000 MS (Java/Others)     Memory Limit: 262144/262144 K (Java/Others) Pr ...

  6. iOS沙盒(sandbox)机制及获取沙盒路径

    一. 每个iOS应用SDK都被限制在“沙盒”中,“沙盒”相当于一个加了仅主人可见权限的文件夹,苹果对沙盒有以下几条限制. (1)应用程序可以在自己的沙盒里运作,但是不能访问任何其他应用程序的沙盒. ( ...

  7. Healthy Holsteins

    链接 分析:因为数据范围比较小,我们可以通过二进制枚举子集,然后找出所需饲料种数最小的并记录下来,同时记录一下路径,也就是字典序最小的 /* PROB:holstein ID:wanghan LANG ...

  8. 嵌入式Linux学习方法——给那些彷徨者(上)

    要想学好嵌入式Linux,首先要解决两个重要问题: 1. 学什么? 2. 怎么学? 首先解决第一个问题. 嵌入式Linux的系统架构包括软件和硬件两个部分,如下图: 再来看看一个成熟的嵌入式产品的开发 ...

  9. Mysql数据库实现高可用

    Mysql实现高可用 MMM MMM(master-master replication manager for mysql)mysql主主复制管理器. MMM是一套灵活的脚本程序,基于perl实现, ...

  10. poj 3648 Wedding【2-SAT+tarjan+拓扑】

    看错题*n,注意是输出新娘这边的-- 按2-SAT规则连互斥的边,然后注意连一条(1,1+n)表示新娘必选 然后输出color[belong[i]]==color[belong[1+n(新娘)]]的点 ...