HDU 4370 0 or 1 (最短路)
[题目链接](http://acm.hdu.edu.cn/showproblem.ph
Problem Description
Given a n/n matrix Cij (1<=i,j<=n),We want to find a n/n matrix Xij (1<=i,j<=n),which is 0 or 1.
Besides,Xij meets the following conditions:
1.X12+X13+...X1n=1
2.X1n+X2n+...Xn-1n=1
3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).
For example, if n=4,we can get the following equality:
X12+X13+X14=1
X14+X24+X34=1
X12+X22+X32+X42=X21+X22+X23+X24
X13+X23+X33+X43=X31+X32+X33+X34
Now ,we want to know the minimum of ∑Cij*Xij(1<=i,j<=n) you can get.
Hint
For sample, X12=X24=1,all other Xij is 0.
Input
The input consists of multiple test cases (less than 35 case).
For each test case ,the first line contains one integer n (1<n<=300).
The next n lines, for each lines, each of which contains n integers, illustrating the matrix C, The j-th integer on i-th line is Cij(0<=Cij<=100000).
Output
For each case, output the minimum of ∑Cij*Xij you can get.
Sample Input
4
1 2 4 10
2 0 1 1
2 2 0 5
6 3 1 2
Sample Output
3
分析:
3个条件明显在刻画未知数之间的关系,从图论的角度思考问题,容易得到下面3个结论:
1.X12+X13+...X1n=1 于是1号节点的出度为1
2..X1n+X2n+...Xn-1n=1 于是n号节点的入度为1
3.∑Xki =∑Xij 于是2~n-1号节点的入度必须等于出度
于是3个条件等价于一条从1号节点到n号节点的路径,故Xij=1表示需要经过边(i,j),代价为Cij。Xij=0表示不经过边(i,j)。注意到Cij非负且题目要求总代价最小,因此最优答案的路径一定可以对应一条简单路径。
情况A:
基本思路就是把矩阵看做一个图,图中有n个点,1号点出度为1,n号点入度为1,其它点出度和入度相等,路径长度都是非负数,等价于一条从1号节点到n号节点的路径,故Xij=1表示需要经过边(i,j),代价为Cij。Xij=0表示不经过边(i,j)。注意到Cij非负且题目要求总代价最小,因此最优答案的路径一定可以对应一条简单路径。
最终,我们直接读入边权的邻接矩阵,跑一次1到n的最短路即可,记最短路为path。
情况B:
从1出发,走一个环(至少经过1个点,即不能是自环),回到1;从n出发,走一个环(同理),回到n。也就是1和n点的出度和入度都为1,其它点的出度和入度为0.
由于边权非负,于是两个环对应着两个简单环。
因此我们可以从1出发,找一个最小花费环,记代价为c1,再从n出发,找一个最小花费环,记代价为c2。
故最终答案为min(path,c1+c2)
由于要计算从出发点出发的闭环的路径长度。所以要在普通SPFA的基础上做点变化。
就是把dist[start]设为INF。同时一开始并不是让出发点入队,而是让出发点能够到达的点入队。
代码:
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
int tu[310][310];//保存路径长度的邻接矩阵
int dis[310];//距离的标记
int vis[310];//是否在队列中标记
int n;
void spfa(int start )
{
queue<int>q;
for(int v=1; v<=n; v++) //初始化
{
if(v==start)//由于要找start的闭环,所以dis[start]设为INF,且不入队
{
dis[v]=INF;
vis[v]=0;
}
else
{
dis[v]=tu[start][v];
q.push(v);
vis[v]=1;
}
}
while(!q.empty())
{
int u=q.front();
q.pop();
for(int v=1; v<=n; v++)
{
if(dis[v]>dis[u]+tu[u][v])
{
dis[v]=dis[u]+tu[u][v];
if(!vis[v])//不在队列
{
vis[v]=true;
q.push(v);
}
}
}
vis[u]=false;
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
scanf("%d",&tu[i][j]);
spfa(1);
int ans1=dis[n];//1到n的最短路
int ans2=dis[1];//1的闭环长度
spfa(n);
ans2+=dis[n];//n的闭环长度
printf("%d\n",min(ans1,ans2));
}
return 0;
}
HDU 4370 0 or 1 (最短路)的更多相关文章
- HDU - 4370 0 or 1 最短路
HDU - 4370 参考:https://www.cnblogs.com/hollowstory/p/5670128.html 题意: 给定一个矩阵C, 构造一个A矩阵,满足条件: 1.X12+X1 ...
- HDU 4370 0 or 1 (最短路+最小环)
0 or 1 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/R Description Given a n*n matrix ...
- HDU - 4370 0 or 1
0 or 1 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- hdu 4370 0 or 1,最短路
题目描述 给定n * n矩阵C ij(1 <= i,j <= n),我们要找到0或1的n * n矩阵X ij(1 <= i,j <= n). 此外,X ij满足以下条件: 1. ...
- HDU 4370 0 or 1(转化为最短路)题解
思路:虽然是最短路专题里的,但也很难想到是最短路,如果能通过这些关系想到图论可能会有些思路.我们把X数组看做邻接矩阵,那么三个条件就转化为了:1.1的出度为1:2.n的入度为1:3.2~n-1的出度等 ...
- HDU 4370 0 or 1(spfa+思维建图+计算最小环)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4370 题目大意:有一个n*n的矩阵Cij(1<=i,j<=n),要找到矩阵Xij(i< ...
- 思维题(转换) HDU 4370 0 or 1
题目传送门 题意:题目巨晦涩的传递出1点和n点的初度等于入度等于1, 其余点出度和入度相等 分析:求最小和可以转换成求最短路,这样符合条件,但是还有一种情况.1点形成一个环,n点也形成一个环,这样也是 ...
- (中等) HDU 4370 0 or 1,建模+Dijkstra。
Description Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij (1<=i,j&l ...
- HDU 4370 0 or 1 (01规划)【Dijkstra】||【spfa】
<题目链接> 题目大意: 一个n*n的01矩阵,满足以下条件 1.X12+X13+...X1n=12.X1n+X2n+...Xn-1n=13.for each i (1<i<n ...
随机推荐
- 通过loadrunner将http返回response写入文本txt中
脚本如下 Action() { int myFile;//lr不支持FILE类型,所以定义一个int类型的file web_reg_save_param("goods_price" ...
- redis批量删除key 命令
redis-cli -n 数据库编号 -a 密码 keys "过滤条件" | xargs redis-cli -n 数据库编号 -a 密码 del Demo: redis-cli ...
- [转帖] SQLNET.ORA的处理.
被一个客户端连接远程数据库阻塞超时的问题困扰了好久,最后终于找到了答案 https://blog.csdn.net/herobox/article/details/16985097 Oracle ...
- UVA11624_Fire!
在一个矩形方阵里面,一个人要从一个位置走向另一个位置,其中某些地方有火源,每过一分钟,火源就会点燃相邻的点,同时相邻的点也变成了火源.人不能通过有火的点.问一个人能够安全地走到目的地去?最短时间多少? ...
- Spring、MyBatis和SpringMVC整合的jar包下载
spring mvc的jar包下载:http://repo.springsource.org/libs-release-local/org/springframework/spring/我下载的5.0 ...
- hihocoder1711 评论框排版[并查集+set]
#include <cstdio> #include <iostream> #include <set> using namespace std; ; struct ...
- 【Cf #291 B】R2D2 and Droid Army(二分,线段树)
因为题目中要求使连续死亡的机器人最多,令人联想到二分答案. 考虑如何检验这之中是否存在一段连续的长度为md的区间,其中花最多k步使得它们都死亡. 这个条件等价于区间中m个最大值的和不超过k. 枚举起点 ...
- ButterKnife注入注解框架用法
Android 依赖注入 ButterKnife 基本使用 - 渐行渐远渐无声 - 博客园http://www.cnblogs.com/fansen/p/5653887.html ButterKnif ...
- 【THUSC2017】巧克力
题目描述 “人生就像一盒巧克力,你永远不知道吃到的下一块是什么味道.” 明明收到了一大块巧克力,里面有若干小块,排成n行m列.每一小块都有自己特别的图案ci,j,它们有的是海星,有的是贝壳,有的 ...
- where EXISTS (子查询)多对多中通过中间表查对方列表
用户表A,小组表B,小组和用户是多对多关系,中间有个中间表M 已知 小组 id 即teamId ,想知道这个小组中的用户列表信息,可以如下写sql: select * from A a where E ...