[题目链接](http://acm.hdu.edu.cn/showproblem.ph

Problem Description

Given a n/n matrix Cij (1<=i,j<=n),We want to find a n/n matrix Xij (1<=i,j<=n),which is 0 or 1.

Besides,Xij meets the following conditions:

1.X12+X13+...X1n=1

2.X1n+X2n+...Xn-1n=1

3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).

For example, if n=4,we can get the following equality:

X12+X13+X14=1

X14+X24+X34=1

X12+X22+X32+X42=X21+X22+X23+X24

X13+X23+X33+X43=X31+X32+X33+X34

Now ,we want to know the minimum of ∑Cij*Xij(1<=i,j<=n) you can get.

Hint

For sample, X12=X24=1,all other Xij is 0.

Input

The input consists of multiple test cases (less than 35 case).

For each test case ,the first line contains one integer n (1<n<=300).

The next n lines, for each lines, each of which contains n integers, illustrating the matrix C, The j-th integer on i-th line is Cij(0<=Cij<=100000).

Output

For each case, output the minimum of ∑Cij*Xij you can get.

Sample Input

4

1 2 4 10

2 0 1 1

2 2 0 5

6 3 1 2

Sample Output

3

分析:

3个条件明显在刻画未知数之间的关系,从图论的角度思考问题,容易得到下面3个结论:

1.X12+X13+...X1n=1 于是1号节点的出度为1

2..X1n+X2n+...Xn-1n=1 于是n号节点的入度为1

3.∑Xki =∑Xij 于是2~n-1号节点的入度必须等于出度

于是3个条件等价于一条从1号节点到n号节点的路径,故Xij=1表示需要经过边(i,j),代价为Cij。Xij=0表示不经过边(i,j)。注意到Cij非负且题目要求总代价最小,因此最优答案的路径一定可以对应一条简单路径。

情况A:

基本思路就是把矩阵看做一个图,图中有n个点,1号点出度为1,n号点入度为1,其它点出度和入度相等,路径长度都是非负数,等价于一条从1号节点到n号节点的路径,故Xij=1表示需要经过边(i,j),代价为Cij。Xij=0表示不经过边(i,j)。注意到Cij非负且题目要求总代价最小,因此最优答案的路径一定可以对应一条简单路径。

最终,我们直接读入边权的邻接矩阵,跑一次1到n的最短路即可,记最短路为path。

情况B:

从1出发,走一个环(至少经过1个点,即不能是自环),回到1;从n出发,走一个环(同理),回到n。也就是1和n点的出度和入度都为1,其它点的出度和入度为0.

由于边权非负,于是两个环对应着两个简单环。

因此我们可以从1出发,找一个最小花费环,记代价为c1,再从n出发,找一个最小花费环,记代价为c2。

故最终答案为min(path,c1+c2)

由于要计算从出发点出发的闭环的路径长度。所以要在普通SPFA的基础上做点变化。

就是把dist[start]设为INF。同时一开始并不是让出发点入队,而是让出发点能够到达的点入队。

代码:

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
int tu[310][310];//保存路径长度的邻接矩阵
int dis[310];//距离的标记
int vis[310];//是否在队列中标记
int n;
void spfa(int start )
{
queue<int>q;
for(int v=1; v<=n; v++) //初始化
{
if(v==start)//由于要找start的闭环,所以dis[start]设为INF,且不入队
{
dis[v]=INF;
vis[v]=0;
}
else
{
dis[v]=tu[start][v];
q.push(v);
vis[v]=1;
}
} while(!q.empty())
{
int u=q.front();
q.pop();
for(int v=1; v<=n; v++)
{
if(dis[v]>dis[u]+tu[u][v])
{
dis[v]=dis[u]+tu[u][v];
if(!vis[v])//不在队列
{
vis[v]=true;
q.push(v); }
}
}
vis[u]=false;
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
scanf("%d",&tu[i][j]);
spfa(1);
int ans1=dis[n];//1到n的最短路
int ans2=dis[1];//1的闭环长度
spfa(n);
ans2+=dis[n];//n的闭环长度
printf("%d\n",min(ans1,ans2));
}
return 0;
}

HDU 4370 0 or 1 (最短路)的更多相关文章

  1. HDU - 4370 0 or 1 最短路

    HDU - 4370 参考:https://www.cnblogs.com/hollowstory/p/5670128.html 题意: 给定一个矩阵C, 构造一个A矩阵,满足条件: 1.X12+X1 ...

  2. HDU 4370 0 or 1 (最短路+最小环)

    0 or 1 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/R Description Given a n*n matrix ...

  3. HDU - 4370 0 or 1

    0 or 1 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  4. hdu 4370 0 or 1,最短路

    题目描述 给定n * n矩阵C ij(1 <= i,j <= n),我们要找到0或1的n * n矩阵X ij(1 <= i,j <= n). 此外,X ij满足以下条件: 1. ...

  5. HDU 4370 0 or 1(转化为最短路)题解

    思路:虽然是最短路专题里的,但也很难想到是最短路,如果能通过这些关系想到图论可能会有些思路.我们把X数组看做邻接矩阵,那么三个条件就转化为了:1.1的出度为1:2.n的入度为1:3.2~n-1的出度等 ...

  6. HDU 4370 0 or 1(spfa+思维建图+计算最小环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4370 题目大意:有一个n*n的矩阵Cij(1<=i,j<=n),要找到矩阵Xij(i< ...

  7. 思维题(转换) HDU 4370 0 or 1

    题目传送门 题意:题目巨晦涩的传递出1点和n点的初度等于入度等于1, 其余点出度和入度相等 分析:求最小和可以转换成求最短路,这样符合条件,但是还有一种情况.1点形成一个环,n点也形成一个环,这样也是 ...

  8. (中等) HDU 4370 0 or 1,建模+Dijkstra。

    Description Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij (1<=i,j&l ...

  9. HDU 4370 0 or 1 (01规划)【Dijkstra】||【spfa】

    <题目链接> 题目大意: 一个n*n的01矩阵,满足以下条件 1.X12+X13+...X1n=12.X1n+X2n+...Xn-1n=13.for each i (1<i<n ...

随机推荐

  1. build.xml

    下载ant 解压ant 后设置ANT_HOME, PATH中添加ANT_HOME目录下的bin目录(如:ANT_HOME:,PATH:D:\apache-ant-1.9.2%ANT_HOME%\bin ...

  2. 检测web服务器指定位置大文件是否存在

    在bugscan群里看到有人问有一个大文件,想探测其是否存在.如果使用curl的话,会将整个文件下载到节点,对于扫描没有任何用处,反而浪费了扫描时间. 于是我想到的解决办法是不使用curl,直接用底层 ...

  3. C 语言assert使用

    1.assert宏的原型定义在<assert.h>中,其作用是如果它的条件返回错误,则终止程序执行,原型定义:#include <assert.h>void assert( i ...

  4. 【Python】Python基础

    源程序文件通常以.py为扩展名 #!/usr/bin/python shebang,即执行脚本时通知内容要启动的解释器 import platform 导入模块 print platform.unam ...

  5. SGU438_The Glorious Karlutka River =)

    好题,有一些人在河的一边,想通过河里的某些点跳到对岸去.每个点最多只能承受一定数量的人,每人跳跃一次需要消耗一个时间.求所有人都过河的最短时间. 看网上说是用了什么动态流的神奇东东.其实就是最大流吧, ...

  6. UVALive6443_Alien Abduction Again

    题意为给你若干个三次函数,以及每一个函数所分布的区间,由于每个函数的所有的系数都是整数,所以最后的函数在整数点处的值也是整数. 现在每次可以插入函数或者询问区间,现在要求每次询问区间后,所有的函数在这 ...

  7. 绿色计算大赛决赛 第二阶段 消息传递(斯坦纳树 状压dp+spfa)

    传送门 Description 作为公司老板的你手下有N个员工,其中有M个特殊员工.现在,你有一个消息需要传递给你的特殊员工.因为你的公司业务非常紧张,所以你和员工之间以及员工之间传递消息会造成损失. ...

  8. c++11 委托构造

    c++11 委托构造 #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <string> #includ ...

  9. GreatSct -应用程序白名单bypass工具

      0x00 GreatSCT简介 GreatSCT目前得到了@ConsciousHacker的支持,该项目名为Great SCT(Great Scott).Great SCT是一个用于生成应用程序白 ...

  10. MyBatis.1入门篇

    一:简介 MyBatis是一个优秀的持久层框架,它对jdbc的操作数据库的过程进行封装,使开发者只需要关注 SQL 本身,而不需要花费精力去处理例如注册驱动.创建connection.创建statem ...