This tutorial is available as a short ebook. The e-book features extra content from follow-up posts on various Python best practices, all in a convenient, self-contained format. All future updates are free for people who purchase it.

Preliminary fluff

So, you want to learn the Python programming language but can't find a concise and yet full-featured tutorial. This tutorial will attempt to teach you Python in 10 minutes. It's probably not so much a tutorial as it is a cross between a tutorial and a cheatsheet, so it will just show you some basic concepts to start you off. Obviously, if you want to really learn a language you need to program in it for a while. I will assume that you are already familiar with programming and will, therefore, skip most of the non-language-specific stuff. The important keywords will be highlighted so you can easily spot them. Also, pay attention because, due to the terseness of this tutorial, some things will be introduced directly in code and only briefly commented on.

Properties

Python is strongly typed (i.e. types are enforced), dynamically, implicitly typed (i.e. you don't have to declare variables), case sensitive (i.e. var and VAR are two different variables) and object-oriented(i.e. everything is an object).

Getting help

Help in Python is always available right in the interpreter. If you want to know how an object works, all you have to do is call help(<object>)! Also useful are dir(), which shows you all the object's methods, and <object>.__doc__, which shows you its documentation string:

>>> help(5)
Help on int object:
(etc etc) >>> dir(5)
['__abs__', '__add__', ...] >>> abs.__doc__
'abs(number) -> number Return the absolute value of the argument.'

Syntax

Python has no mandatory statement termination characters and blocks are specified by indentation. Indent to begin a block, dedent to end one. Statements that expect an indentation level end in a colon (:). Comments start with the pound (#) sign and are single-line, multi-line strings are used for multi-line comments. Values are assigned (in fact, objects are bound to names) with the equals sign ("="), and equality testing is done using two equals signs ("=="). You can increment/decrement values using the += and -= operators respectively by the right-hand amount. This works on many datatypes, strings included. You can also use multiple variables on one line. For example:

>>> myvar = 3
>>> myvar += 2
>>> myvar
5
>>> myvar -= 1
>>> myvar
4
"""This is a multiline comment.
The following lines concatenate the two strings."""
>>> mystring = "Hello"
>>> mystring += " world."
>>> print mystring
Hello world.
# This swaps the variables in one line(!).
# It doesn't violate strong typing because values aren't
# actually being assigned, but new objects are bound to
# the old names.
>>> myvar, mystring = mystring, myvar

Data types

The data structures available in python are lists, tuples and dictionaries. Sets are available in thesets library (but are built-in in Python 2.5 and later). Lists are like one-dimensional arrays (but you can also have lists of other lists), dictionaries are associative arrays (a.k.a. hash tables) and tuples are immutable one-dimensional arrays (Python "arrays" can be of any type, so you can mix e.g. integers, strings, etc in lists/dictionaries/tuples). The index of the first item in all array types is 0. Negative numbers count from the end towards the beginning, -1 is the last item. Variables can point to functions. The usage is as follows:

>>> sample = [1, ["another", "list"], ("a", "tuple")]
>>> mylist = ["List item 1", 2, 3.14]
>>> mylist[0] = "List item 1 again" # We're changing the item.
>>> mylist[-1] = 3.21 # Here, we refer to the last item.
>>> mydict = {"Key 1": "Value 1", 2: 3, "pi": 3.14}
>>> mydict["pi"] = 3.15 # This is how you change dictionary values.
>>> mytuple = (1, 2, 3)
>>> myfunction = len
>>> print myfunction(mylist)
3

You can access array ranges using a colon (:). Leaving the start index empty assumes the first item, leaving the end index assumes the last item. Negative indexes count from the last item backwards (thus -1 is the last item) like so:

>>> mylist = ["List item 1", 2, 3.14]
>>> print mylist[:]
['List item 1', 2, 3.1400000000000001]
>>> print mylist[0:2]
['List item 1', 2]
>>> print mylist[-3:-1]
['List item 1', 2]
>>> print mylist[1:]
[2, 3.14]
# Adding a third parameter, "step" will have Python step in
# N item increments, rather than 1.
# E.g., this will return the first item, then go to the third and
# return that (so, items 0 and 2 in 0-indexing).
>>> print mylist[::2]
['List item 1', 3.14]

Strings

Its strings can use either single or double quotation marks, and you can have quotation marks of one kind inside a string that uses the other kind (i.e. "He said 'hello'." is valid). Multiline strings are enclosed in triple double (or single) quotes ("""). Python supports Unicode out of the box, using the syntax u"This is a unicode string". To fill a string with values, you use the % (modulo) operator and a tuple. Each %s gets replaced with an item from the tuple, left to right, and you can also use dictionary substitutions, like so:

>>>print "Name: %s\
Number: %s\
String: %s" % (myclass.name, 3, 3 * "-")
Name: Poromenos
Number: 3
String: --- strString = """This is
a multiline
string.""" # WARNING: Watch out for the trailing s in "%(key)s".
>>> print "This %(verb)s a %(noun)s." % {"noun": "test", "verb": "is"}
This is a test.

Flow control statements

Flow control statements are iffor, and while. There is no switch; instead, use if. Use for to enumerate through members of a list. To obtain a list of numbers, use range(<number>). These statements' syntax is thus:

rangelist = range(10)
>>> print rangelist
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
for number in rangelist:
# Check if number is one of
# the numbers in the tuple.
if number in (3, 4, 7, 9):
# "Break" terminates a for without
# executing the "else" clause.
break
else:
# "Continue" starts the next iteration
# of the loop. It's rather useless here,
# as it's the last statement of the loop.
continue
else:
# The "else" clause is optional and is
# executed only if the loop didn't "break".
pass # Do nothing if rangelist[1] == 2:
print "The second item (lists are 0-based) is 2"
elif rangelist[1] == 3:
print "The second item (lists are 0-based) is 3"
else:
print "Dunno" while rangelist[1] == 1:
pass

Functions

Functions are declared with the "def" keyword. Optional arguments are set in the function declaration after the mandatory arguments by being assigned a default value. For named arguments, the name of the argument is assigned a value. Functions can return a tuple (and using tuple unpacking you can effectively return multiple values). Lambda functions are ad hoc functions that are comprised of a single statement. Parameters are passed by reference, but immutable types (tuples, ints, strings, etc) *cannot be changed*. This is because only the memory location of the item is passed, and binding another object to a variable discards the old one, so immutable types are replaced. For example:

# Same as def funcvar(x): return x + 1
funcvar = lambda x: x + 1
>>> print funcvar(1)
2 # an_int and a_string are optional, they have default values
# if one is not passed (2 and "A default string", respectively).
def passing_example(a_list, an_int=2, a_string="A default string"):
a_list.append("A new item")
an_int = 4
return a_list, an_int, a_string >>> my_list = [1, 2, 3]
>>> my_int = 10
>>> print passing_example(my_list, my_int)
([1, 2, 3, 'A new item'], 4, "A default string")
>>> my_list
[1, 2, 3, 'A new item']
>>> my_int
10

Classes

Python supports a limited form of multiple inheritance in classes. Private variables and methods can be declared (by convention, this is not enforced by the language) by adding at least two leading underscores and at most one trailing one (e.g. "__spam"). We can also bind arbitrary names to class instances. An example follows:

class MyClass(object):
common = 10
def __init__(self):
self.myvariable = 3
def myfunction(self, arg1, arg2):
return self.myvariable # This is the class instantiation
>>> classinstance = MyClass()
>>> classinstance.myfunction(1, 2)
3
# This variable is shared by all classes.
>>> classinstance2 = MyClass()
>>> classinstance.common
10
>>> classinstance2.common
10
# Note how we use the class name
# instead of the instance.
>>> MyClass.common = 30
>>> classinstance.common
30
>>> classinstance2.common
30
# This will not update the variable on the class,
# instead it will bind a new object to the old
# variable name.
>>> classinstance.common = 10
>>> classinstance.common
10
>>> classinstance2.common
30
>>> MyClass.common = 50
# This has not changed, because "common" is
# now an instance variable.
>>> classinstance.common
10
>>> classinstance2.common
50 # This class inherits from MyClass. The example
# class above inherits from "object", which makes
# it what's called a "new-style class".
# Multiple inheritance is declared as:
# class OtherClass(MyClass1, MyClass2, MyClassN)
class OtherClass(MyClass):
# The "self" argument is passed automatically
# and refers to the class instance, so you can set
# instance variables as above, but from inside the class.
def __init__(self, arg1):
self.myvariable = 3
print arg1 >>> classinstance = OtherClass("hello")
hello
>>> classinstance.myfunction(1, 2)
3
# This class doesn't have a .test member, but
# we can add one to the instance anyway. Note
# that this will only be a member of classinstance.
>>> classinstance.test = 10
>>> classinstance.test
10

Exceptions

Exceptions in Python are handled with try-except [exceptionname] blocks:

def some_function():
try:
# Division by zero raises an exception
10 / 0
except ZeroDivisionError:
print "Oops, invalid."
else:
# Exception didn't occur, we're good.
pass
finally:
# This is executed after the code block is run
# and all exceptions have been handled, even
# if a new exception is raised while handling.
print "We're done with that." >>> some_function()
Oops, invalid.
We're done with that.

Importing

External libraries are used with the import [libname] keyword. You can also use from [libname] import [funcname] for individual functions. Here is an example:

import random
from time import clock randomint = random.randint(1, 100)
>>> print randomint
64

File I/O

Python has a wide array of libraries built in. As an example, here is how serializing (converting data structures to strings using the pickle library) with file I/O is used:

import pickle
mylist = ["This", "is", 4, 13327]
# Open the file C:\\binary.dat for writing. The letter r before the
# filename string is used to prevent backslash escaping.
myfile = open(r"C:\\binary.dat", "w")
pickle.dump(mylist, myfile)
myfile.close() myfile = open(r"C:\\text.txt", "w")
myfile.write("This is a sample string")
myfile.close() myfile = open(r"C:\\text.txt")
>>> print myfile.read()
'This is a sample string'
myfile.close() # Open the file for reading.
myfile = open(r"C:\\binary.dat")
loadedlist = pickle.load(myfile)
myfile.close()
>>> print loadedlist
['This', 'is', 4, 13327]

Miscellaneous

  • Conditions can be chained. 1 < a < 3 checks that a is both less than 3 and greater than 1.
  • You can use del to delete variables or items in arrays.
  • List comprehensions provide a powerful way to create and manipulate lists. They consist of an expression followed by a for clause followed by zero or more if or for clauses, like so:
>>> lst1 = [1, 2, 3]
>>> lst2 = [3, 4, 5]
>>> print [x * y for x in lst1 for y in lst2]
[3, 4, 5, 6, 8, 10, 9, 12, 15]
>>> print [x for x in lst1 if 4 > x > 1]
[2, 3]
# Check if a condition is true for any items.
# "any" returns true if any item in the list is true.
>>> any([i % 3 for i in [3, 3, 4, 4, 3]])
True
# This is because 4 % 3 = 1, and 1 is true, so any()
# returns True. # Check for how many items a condition is true.
>>> sum(1 for i in [3, 3, 4, 4, 3] if i == 4)
2
>>> del lst1[0]
>>> print lst1
[2, 3]
>>> del lst1
  • Global variables are declared outside of functions and can be read without any special declarations, but if you want to write to them you must declare them at the beginning of the function with the "global" keyword, otherwise Python will bind that object to a new local variable (be careful of that, it's a small catch that can get you if you don't know it). For example:
number = 5

def myfunc():
# This will print 5.
print number def anotherfunc():
# This raises an exception because the variable has not
# been bound before printing. Python knows that it an
# object will be bound to it later and creates a new, local
# object instead of accessing the global one.
print number
number = 3 def yetanotherfunc():
global number
# This will correctly change the global.
number = 3

Epilogue

This tutorial is not meant to be an exhaustive list of all (or even a subset) of Python. Python has a vast array of libraries and much much more functionality which you will have to discover through other means, such as the excellent book Dive into Python. I hope I have made your transition in Python easier. Please leave comments if you believe there is something that could be improved or added or if there is anything else you would like to see (classes, error handling, anything).

By the way, you should follow me on Twitter.

from: https://www.stavros.io/tutorials/python/#

快速入门:十分钟学会PythonTutorial - Learn Python in 10 minutes的更多相关文章

  1. 1 flume快速入门——十分钟学会flume

    flume ## 1.1 Flume定义 Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统.Flume基于流式架构,灵活简单. 大数据框架大致分为3类: ...

  2. 十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less))

    十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less)) 注:本文为翻译文章,因翻译水平有限,难免有缺漏不足之处,可查看原文. 我们知道写css代码是非常枯燥的 ...

  3. PHP学习过程_Symfony_(3)_整理_十分钟学会Symfony

    这篇文章主要介绍了Symfony学习十分钟入门教程,详细介绍了Symfony的安装配置,项目初始化,建立Bundle,设计实体,添加约束,增删改查等基本操作技巧,需要的朋友可以参考下 (此文章已被多人 ...

  4. 快速入门:十分钟学会Python

    初试牛刀 假设你希望学习Python这门语言,却苦于找不到一个简短而全面的入门教程.那么本教程将花费十分钟的时间带你走入Python的大门.本文的内容介于教程(Toturial)和速查手册(Cheat ...

  5. 快速入门:十分钟学会Python(转)

    初试牛刀 假设你希望学习Python这门语言,却苦于找不到一个简短而全面的入门教程.那么本教程将花费十分钟的时间带你走入Python的大门.本文的内容介于教程(Toturial)和速查手册(Cheat ...

  6. 高速入门:十分钟学会Python

    初试牛刀 如果你希望学习Python这门语言.却苦于找不到一个简短而全面的新手教程.那么本教程将花费十分钟的时间带你走入Python的大门.本文的内容介于教程(Toturial)和速查手冊(Cheat ...

  7. Python十分钟学会

    初试牛刀 假设你希望学习Python这门语言,却苦于找不到一个简短而全面的入门教程.那么本教程将花费十分钟的时间带你走入Python的大门.本文的内容介于教程(Toturial)和速查手册(Cheat ...

  8. 十分钟学会 tmux

    tmux 是一款终端复用命令行工具,一般用于 Terminal 的窗口管理.在 macOS 下,使用 iTerm2 能应付绝大多数窗口管理的需求. 如上图所示,iTerm2 能新建多个标签页(快捷键 ...

  9. <转>十分钟学会javascript

    本文转自国外知名网站Learn X in Y minutes. 由于格式的限制无法直接将Markdown转贴过来,所以只能用Iframe的方式. 本文适合有一定编程基础又对Javascript感兴趣的 ...

随机推荐

  1. java 基础类库之 SQLFun

    package com.exjor.webdemo; import java.sql.Timestamp; import java.util.Date; public class SQLFun { / ...

  2. DotNetOpenAuth实践之搭建验证服务器

    系列目录: DotNetOpenAuth实践系列(源码在这里) DotNetOpenAuth是OAuth2的.net版本,利用DotNetOpenAuth我们可以轻松的搭建OAuth2验证服务器,不废 ...

  3. USACO 4.4 Frame Up

    Frame Up Consider the following five picture frames shown on an 9 x 8 array: ........ ........ ..... ...

  4. Java 中byte 与 char 的相互转换 Java基础 但是很重要

    char转化为byte: public static byte[] charToByte(char c) {        byte[] b = new byte[2];        b[0] = ...

  5. POJ - 1329 Circle Through Three Points 求圆

    Circle Through Three Points Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4112   Acce ...

  6. python面向对象中类对象、实例对象、类变量、实例变量、类方法、实例方法、静态方法

    1. 类对象和实例对象 Python中一切皆对象,Python类本身也是一种对象,类定义完成后,会在当前作用域中定义一个以类名为名字的命名空间.类对象具有以下两种操作: 可以通过“类名()”的方式实例 ...

  7. Linux驱动之IIC总线

    <作用> 电子设备中有很多IIC设备之间需要进行相互通信,这样就产生了IIC总线,常用来实现设备之间的数据通信.   <IIC总线结构> IIC总线只有两条线,一条是串行数据线 ...

  8. android 安全退出 activity

    韩梦飞沙  韩亚飞  313134555@qq.com  yue31313  han_meng_fei_sha 定义一个 活动 的基础类, 每次打开一个 活动,就记录下来. 退出时,关闭每一个 活动. ...

  9. 排序算法之冒泡排序Java实现

    排序算法之冒泡排序 舞蹈演示排序: 冒泡排序: http://t.cn/hrf58M 希尔排序:http://t.cn/hrosvb  选择排序:http://t.cn/hros6e  插入排序:ht ...

  10. java线程本地变量

      ThreadLocal是什么呢?其实ThreadLocal并非是一个线程的本地实现版本,它并不是一个Thread,而是threadlocalvariable(线程局部变量).也许把它命名为Thre ...