算法复杂度分为时间复杂度和空间复杂度。

其作用:
时间复杂度是指执行算法所需要的计算工作量;
而空间复杂度是指执行这个算法所需要的内存空间。
(算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度)。

简单来说,时间复杂度指的是语句执行次数,空间复杂度指的是算法所占的存储空间

计算时间复杂度的方法:

  1. 用常数1代替运行时间中的所有加法常数
  2. 修改后的运行次数函数中,只保留最高阶项
  3. 去除最高阶项的系数

按数量级递增排列,常见的时间复杂度有:
常数阶O(1),对数阶O(log2n),线性阶O(n),
线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),…,
k次方阶O(n^k),指数阶O(2^n)
随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

1.时间复杂度

 print('Hello world') # O(1)

 # O(1)
print('Hello World')
print('Hello Python')
print('Hello KadyCui') for i in range(n): # O(n)
print('Hello world') for i in range(n): # O(n^2)
for j in range(n):
print('Hello world') for i in range(n): # O(n^2)
print('Hello World')
for j in range(n):
print('Hello World') for i in range(n): # O(n^2)
for j in range(i):
print('Hello World') for i in range(n):
for j in range(n):
for k in range(n):
print('Hello World') # O(n^3)

2.空间复杂度

 a = 'Python' # 空间复杂度为1

 # 空间复杂度为1
a = 'Python'
b = 'PHP'
c = 'Java' num = [1, 2, 3, 4, 5] # 空间复杂度为5 num = [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]] # 空间复杂度为5*4 num = [[[1, 2], [1, 2]], [[1, 2], [1, 2]] , [[1, 2], [1, 2]]] # 空间复杂度为3*2*2
 
 
 
 
 

Python语言算法的时间复杂度和空间复杂度的更多相关文章

  1. C#中常用的排序算法的时间复杂度和空间复杂度

    常用的排序算法的时间复杂度和空间复杂度   常用的排序算法的时间复杂度和空间复杂度 排序法 最差时间分析 平均时间复杂度 稳定度 空间复杂度 冒泡排序 O(n2) O(n2) 稳定 O(1) 快速排序 ...

  2. php算法基础----时间复杂度和空间复杂度

    算法复杂度分为时间复杂度和空间复杂度. 其作用: 时间复杂度是指执行算法所需要的计算工作量: 而空间复杂度是指执行这个算法所需要的内存空间. (算法的复杂性体现在运行该算法时的计算机所需资源的多少上, ...

  3. 初始数据结构(python语言)

    数据结构 概念:数据结构是指相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成 算法复杂度 时间复杂度 时间复杂度是同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法 ...

  4. python常用算法学习(3)

    1,什么是算法的时间和空间复杂度 算法(Algorithm)是指用来操作数据,解决程序问题的一组方法,对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但是在过程中消耗的资源和时间却会有很大 ...

  5. [Java初探外篇]__关于时间复杂度与空间复杂度

    前言 我们在前面的排序算法的学习中了解到了,排序算法的分类,效率的比较所使用到的判断标准,就包括时间复杂度和空间复杂度,当时因为这两个定义还是比较难以理解的,所以决定单独开一篇文章,记录一下学习的过程 ...

  6. Python(算法)-时间复杂度和空间复杂度

    时间复杂度 算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用“O”表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况 时间复杂度是用来估计算法 ...

  7. 0.数据结构(python语言) 基本概念 算法的代价及度量!!!

    先看思维导图: *思维导图有点简陋,本着循循渐进的思想,这小节的知识大多只做了解即可. *重点在于算法的代价及度量!!!查找资料务必弄清楚. 零.四个基本概念 问题:一个具体的需求 问题实例:针对问题 ...

  8. 用python语言讲解数据结构与算法

    写在前面的话:关于数据结构与算法讲解的书籍很多,但是用python语言去实现的不是很多,最近有幸看到一本这样的书籍,由Brad Miller and David Ranum编写的<Problem ...

  9. 深入浅出数据结构C语言版(2)——简要讨论算法的时间复杂度

    所谓算法的"时间复杂度",你可以将其理解为算法"要花费的时间量".比如说,让你用抹布(看成算法吧--)将家里完完全全打扫一遍大概要5个小时,那么你用抹布打扫家里 ...

随机推荐

  1. Apache和Nginx比较

    Apache和Nginx对比 功能对比 Nginx和Apache一样,都是HTTP服务器软件,在功能实现上都采用模块化结构设计,都支持通用的语言接口,如PHP.Perl.Python等,同时还支持正向 ...

  2. hdu2544最短路(dijkstra)

    传送门 dijkstra #include<bits/stdc++.h> using namespace std; const int INF=0x3f3f3f3f; ; int dist ...

  3. Jmeter+ant+jenkins接口自动化测试 平台搭建(三)

    四.报告优化 Jmeter 默认生成报告不是很详细,因此我们需要进行优化.这里我们使用新的报告模板:默认的报告模板是 jmeter-results-detail-report_21.xsl 先上效果图 ...

  4. Unity3D画面渲染官方教程(一)对光照和渲染的介绍

    本系列是对官方教程的翻译加上自己的一些理解译著的,官方网址:https://unity3d.com/cn/learn/tutorials/s/graphics 翻译上尽量保证准确性,但不排除省略或者添 ...

  5. RabbitMQ入门:路由(Routing)

    在上一篇博客<RabbitMQ入门:发布/订阅(Publish/Subscribe)>中,我们认识了fanout类型的exchange,它是一种通过广播方式发送消息的路由器,所有和exch ...

  6. spring-boot rabbitMq 完整项目搭建,包括创建、发送、监听

    写在开始 rabbitMq 代码按照三部分介绍 第一部分 交换机和队列的创建 第二部分 消息发送 第三部分 消息监听 第一部分 1 建立queue 2 建立exchange 3 exchange绑定q ...

  7. R软件中 文本分析安装包 Rjava 和 Rwordseg 傻瓜式安装方法四部曲

    这两天,由于要做一个文本分析的内容,所以搜索了一天R语言中的可以做文本分析的加载包,但是在安装包的过程,真是被虐千百遍,总是安装不成功.特此专门写一篇博文,把整个心塞史畅快的释放一下. ------- ...

  8. Tomcat安全管理规范

    s 前言 随着公司内部使用Tomcat作为web应用服务器的规模越来越大,为保证Tomcat的配置安全,防止信息泄露,恶性攻击以及配置的安全规范,特制定此Tomcat安全配置规范. 定位:仅对tomc ...

  9. centos7安装oracle的一些问题

    在配置监听的时候尝试了很多次都是不能创建,最后将 /data/oracle/product/11.2.0/db_1/network/admin目录下的listener.ora和tnsname.ora两 ...

  10. Ambiguous mapping. Cannot map 'labelInfoController' method

    使用springboot项目中,启动时出现Ambiguous mapping. Cannot map 'labelInfoController' method , 原因是,@RequestMappin ...