SPOJ 74. Divisor Summation 分解数字的因子
本题有两个难点:
1 大量的数据输入。没处理好就超时 - 这里使用buffer解决
2 因子分解的算法 a)暴力法超时 b)使用sieve(筛子),只是当中的算法逻辑也挺不easy搞对的。
数值N因子分解逻辑:
1 保存全部能够sqrt(N)范围内的质素
2 找到能够被N除尽的质素d, 然后用d去除N。使用deg变量,保存度。即有多少个d能够被N除尽
3 用d去乘全部已经找到的因子(包含1),假设度deg大于1。那么循环i从1到deg, 用d*i去乘全部找到的因子
找到全部因子相加,减去N,就是答案。
原题:http://www.spoj.com/problems/DIVSUM/
本题是tutorial题,能够说不是非常难的题目,只是看了下提交的记录,超时的2.5万左右,AC的1万左右。
当中包括数学思想的:
-- by Rosen
THE FUNDAMENTAL THEOREM OF ARITHMETIC:
Every integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.
The prime factorizations of 100, 641, 999, and 1024 are given by
100 = 2 · 2 · 5 · 5 = 2 2 5 2 ,
641 = 641,
999 = 3 · 3 · 3 · 37 = 3 3 · 37,
1024 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 2 10
-- 本题因式分解的基本数学思想
只是本题不单须要质数,而是须要全部能除尽的数,那么就是这些质数组合起来了。
If n is a composite integer, then n has a prime divisor less than or equal to√ n.
it follows that an integer is prime if it is not divisible by any prime less than or equal to its square root. This leads to the brute-force algorithm known as trial division.
-- 这个是半暴力法用来找素数(也叫质数)的数学思想
class DivisorSummation47
{
const static int MAX_BUF = 5120;
int st, len;
char inBuf[MAX_BUF]; const static int FLASH_P = MAX_BUF - 12;
int oSt;
char outBuf[MAX_BUF]; const static int MAX_NUM = 500000;
bool *sieve; char getFromBuf()
{
if (st >= len)
{
len = fread(inBuf, sizeof(char), MAX_BUF, stdin);
st = 0;
}
return inBuf[st++];
}
int intFromBuf()
{
char c = getFromBuf();
while (c < '0' || '9' < c && len)
{
c = getFromBuf();
}
int num = 0;
while ('0' <= c && c <= '9' && len)
{
num = (num<<3) + (num<<1) + (c - '0');
c = getFromBuf();
}
return num;
} void wrToBuf(int num, char sep)
{
if (oSt > FLASH_P)
{
fwrite(outBuf, sizeof(char), oSt, stdout);
oSt = 0;
}
if (0 == num)
{
outBuf[oSt++] = '0';
outBuf[oSt++] = sep;//漏了这句错误
return;
}
char chs[12];
int i = 0;
while (num)
{
chs[i++] = num % 10 + '0';//这里竟然忘记步进i错误
num /= 10;
}
for (i--; i >= 0; i--)
{
outBuf[oSt++] = chs[i];
}
outBuf[oSt++] = sep;
}
inline void flashLeft()
{
if (oSt) fwrite(outBuf, sizeof(char), oSt, stdout);
}
public:
DivisorSummation47() : st(0), len(0), oSt(0)
{
int sq = (int)sqrt(double(MAX_NUM));
sieve = (bool *) calloc(sizeof(bool), sq+1);
//fill(sieve, sieve+sq+1, false);
vector<int> primes;
for (int i = 2; i <= sq; i++)
{
if (!sieve[i])
{
for (int j = (i<<1); j <= sq; j += i)
{
sieve[j] = true;
}
primes.push_back(i);
}
} int T = 0;
T = intFromBuf();
while (T--)
{
int num = intFromBuf();
int N = num;
vector<int> divs(1, 1);
for (int i = 0; i < (int)primes.size() && num > 1; i++)
{
int d = primes[i];
if (d*d > num) d = num;
if (num % d == 0)
{
int deg = 0;
for ( ; num % d == 0; num /= d) deg++;
for (int j = (int)divs.size() - 1; j >= 0 ; j--)
{
int t = divs[j];
for (int k = 0; k < deg; k++)
{
t *= d;
divs.push_back(t);
}
}
}
}
int ans = -N;
for (int i = 0; i < (int)divs.size(); i++)
{
ans += divs[i];
}
wrToBuf(ans, '\n');
}//while(T--)
flashLeft();
}
};
SPOJ 74. Divisor Summation 分解数字的因子的更多相关文章
- SPOJ DIVSUM - Divisor Summation
DIVSUM - Divisor Summation #number-theory Given a natural number n (1 <= n <= 500000), please ...
- HDU6623 思维题(n分解成质因子的形式,问最小的幂是多少)
题目大意:给你一个数n,把它分解为素数的幂次的乘积的形式:n=p1^e1 * p2^e2 * .......pk^ek 求最小的幂次是多少 n=le18 分析: 首先我们肯定是不可以枚举1e18的因 ...
- spoj 1029 Matrix Summation
题意: 对一个矩阵有2种操作: 1.把某个元素设为x. 2.查询以(x1,y1)为左上角 以(x2,y2)为右上角的矩阵中的数字的和. 思路: 二维树状数组入门题,同时对横坐标和纵坐标做前缀和就行了. ...
- zoj 2095 Divisor Summation
和 hdu 1215 一个意思// 只是我 1坑了 1 时应该为0 #include <iostream> #include <math.h> #include <map ...
- 【C/C++】任意大于1的整数分解成素数因子乘积的形式
// #include<stdio.h> #include<math.h> #include<malloc.h> int isprime(long n); void ...
- SPOJ 1029 Matrix Summation【 二维树状数组 】
题意:二维树状数组,更改值的时候有一点不一样, 是将a[x][y]设置为一个值,所以add的时候要将它和以前的值作差一下 #include<iostream> #include<cs ...
- codeforces 1025B Weakened Common Divisor(质因数分解)
题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...
- uva 993 Product of digits (贪心 + 分解因子)
Product of digits For a given non-negative integer number N , find the minimal natural Q such tha ...
- R语言基础:数组&列表&向量&矩阵&因子&数据框
R语言基础:数组和列表 数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, d ...
随机推荐
- 解析本内置Linux目录结构
使用声明:1.此版本采用官方原版ISO+俄罗斯HunterTik 的Debian包制作而成2.此IMG包未进行Crack,资源来源于网络,如果你下载的是Crack版,与原作者无关,请自行分辨.“就看人 ...
- .Net高级技术——IDisposable
IDisposable概述 GC(垃圾收集器)只能回收托管(Managed)内存资源,对于数据库连接.文件句柄.Socket连接等这些资源(非托管资源,UnManaged)就无能为例,必须程序员自己控 ...
- WP8.1 VS iOS VS Android全方面大比拼
众所周知,苹果的OS和谷歌的Android系统都有着相对成熟的设计和较好的用户体验,而随着WP8.1的发布,微软WP系统在交互方面也有了很多改进和提升,而今天小编便为大家全面对比一下这三大系统. ...
- 事物的隔离级别与并发完美体现了cap理论(确保数据完整、安全、一致性,在此基础上实现高性能访问(鱼和熊掌不可兼得)
事物的隔离级别与并发完美体现了cap理论(确保数据完整.安全.一致性,在此基础上实现高性能访问(鱼和熊掌不可兼得)
- Windows 7 下玩游戏不能全屏
问题描述:许多用户反映,在 Windows 7 环境下,全屏游戏时两边屏幕都是黑的,只好窗口运行了.其实这是正常现象:有些游戏本身并没有提供宽屏分辨率支持.其图形界面都是按照一定比例(如 4:3)来设 ...
- 音频视频解决方案:GStreamer/ffmpeg/ffdshow/directshow/vfw
音频视频编程相关:GStreamer/ffmpeg/directshow/vfw linux和window下几种流行的音频视频编程框架作一个总结,防止自己迷惘,免于晕头转向. 一.GStreamer ...
- jQuery元素属性attr设置多个键值或函数 删除属性removeAttr
$("Element").attr(name) '取得第一个匹配的属性值,比如$("img").attr("src") $("El ...
- struts2中的namespace意义
<package name="user" namespace="/user" extends="struts-default"> ...
- 《JavaScript网页特效经典300例》
<JavaScript网页特效经典300例> 基本信息 作者: 杨磊 张志美 丛书名: 百炼成钢系列丛书 出版社:电子工业出版社 ISBN:9787121220524 上架时间:20 ...
- word转pdf图片问题
经过整理总结出两类问题:1,pdf文件下载文档中某些图片显示红叉. 问题现象:pdf是通过word转换成,发现源文件doc和docx文档均出现上述问题:只是某些图片显示红叉.通过这两点确定和文 ...