Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 19919   Accepted: 10544

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:



In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3 单次的lca,每次从u和v的depth较深的开始往上面找,然后如果一样就跳出,不一样继续找
复杂度depth[u]+depth[v]
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 10019
#define eps 1e-9
const int inf=0x7fffffff; //无限大
int flag1[maxn];
int flag2[maxn];
vector<int> G[maxn];//图的邻接表表示方法
int root;//根节点的编号 int parent[maxn];//父亲节点
int depth[maxn];//节点的深度 void dfs(int v,int p,int d)
{
parent[v]=p;
depth[v]=d;
for(int i=;i<G[v].size();i++)
{
if(G[v][i]!=p)
dfs(G[v][i],v,d+);
}
} void init()
{
dfs(root,,-);
} int lca(int u,int v)
{
while(depth[u]>depth[v])
u=parent[u];
while(depth[v]>depth[u])
v=parent[v];
while(u!=v)
{
u=parent[u];
v=parent[v];
}
return u;
} int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=;i<n;i++)
G[i].clear();
memset(parent,,sizeof(parent));
memset(depth,,sizeof(depth));
memset(flag1,,sizeof(flag1));
memset(flag2,,sizeof(flag2));
int a,b;
for(int i=;i<n-;i++)
{
cin>>a>>b;
G[a].push_back(b);
flag1[a]=;
flag2[b]=;
}
for(int i=;i<=n;i++)
{
if(flag1[i]==&&flag2[i]==)
{
root=i;
break;
}
}
init();
cin>>a>>b;
cout<<lca(a,b)<<endl;
}
}

poj 1330 Nearest Common Ancestors 单次LCA/DFS的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  2. POJ 1330 Nearest Common Ancestors(裸LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39596   Accept ...

  3. POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)

    Description A rooted tree is a well-known data structure in computer science and engineering. An exa ...

  4. poj 1330 Nearest Common Ancestors 裸的LCA

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...

  5. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  6. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  7. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  8. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  9. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

随机推荐

  1. 用C代码简要模拟实现一下RPC(远程过程调用)并谈谈它在代码调测中的重要应用【转】

    转自:http://blog.csdn.net/stpeace/article/details/44947925 版权声明:本文为博主原创文章,转载时请务必注明本文地址, 禁止用于任何商业用途, 否则 ...

  2. Docker基础速成(一)

    Docker基础速成(一) 给亲爱的写的docker基础速成,按照步骤操作,实践出真知,希望有提纲挈领之功效 1.docker简介 Docker 轻量级容器,如图,类似于一个个集装箱,把复杂或者零散的 ...

  3. java浅复制与深手动构造实现

    首先来看看浅拷贝和深拷贝的定义: 浅拷贝:使用一个已知实例对新创建实例的成员变量逐个赋值,这个方式被称为浅拷贝. 深拷贝:当一个类的拷贝构造方法,不仅要复制对象的所有非引用成员变量值,还要为引用类型的 ...

  4. JSONArray().fromObject(); 出现org.apache.catalina.core.StandardWrapperValve invoke错误的解决办法

    servlet: public void service(HttpServletRequest request, HttpServletResponse response) throws Servle ...

  5. mysql测试工具 -> mysqlslap

    一.简介 mysqlslap是mysql自带的基准测试工具 优点:查询数据,语法简单,灵活容易使用.该工具可以模拟多个客户端同时并发的向服务器发出查询更新,给出了性能测试数据而且提供了多种引擎的性能比 ...

  6. 10 The Go Programming Language Specification go语言规范 重点

    The Go Programming Language Specification go语言规范 Version of May 9, 2018 Introduction 介绍 Notation 符号 ...

  7. Angular CLI 命令行工具

    工欲善其事必先利其器.好的工具让开发更加简单便捷. 1.全局安装angular cli npm install -g @angular/cli 2.安装完成后就可以使用angular-cli命令行工具 ...

  8. linux终端操作快捷键

    终端操作快捷键: 新建家目录下终端窗口:Ctrl+Alt+t在当期当前路径下新建终端窗口:Ctrl+Shift+n退出终端窗口:Ctrl+Shift+q 多个终端窗口之间相互切换:Tab+Alt 终端 ...

  9. 开发者常用的 Sublime Text 3 插件

    1.官网下载 Sublime Text 3 (已有安装包的,请忽略) Sublime Text 官网下载地址 : http://www.sublimetext.com/ 2.打开 Sublime Te ...

  10. tensorflow高级库

    1.tf.app.flags tf定义了tf.app.flags,用于支持接受命令行传递参数,相当于接受argv.tf.app.flags.DEFINE_xxx()就是添加命令行的optional a ...