Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 19919   Accepted: 10544

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:



In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3 单次的lca,每次从u和v的depth较深的开始往上面找,然后如果一样就跳出,不一样继续找
复杂度depth[u]+depth[v]
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 10019
#define eps 1e-9
const int inf=0x7fffffff; //无限大
int flag1[maxn];
int flag2[maxn];
vector<int> G[maxn];//图的邻接表表示方法
int root;//根节点的编号 int parent[maxn];//父亲节点
int depth[maxn];//节点的深度 void dfs(int v,int p,int d)
{
parent[v]=p;
depth[v]=d;
for(int i=;i<G[v].size();i++)
{
if(G[v][i]!=p)
dfs(G[v][i],v,d+);
}
} void init()
{
dfs(root,,-);
} int lca(int u,int v)
{
while(depth[u]>depth[v])
u=parent[u];
while(depth[v]>depth[u])
v=parent[v];
while(u!=v)
{
u=parent[u];
v=parent[v];
}
return u;
} int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=;i<n;i++)
G[i].clear();
memset(parent,,sizeof(parent));
memset(depth,,sizeof(depth));
memset(flag1,,sizeof(flag1));
memset(flag2,,sizeof(flag2));
int a,b;
for(int i=;i<n-;i++)
{
cin>>a>>b;
G[a].push_back(b);
flag1[a]=;
flag2[b]=;
}
for(int i=;i<=n;i++)
{
if(flag1[i]==&&flag2[i]==)
{
root=i;
break;
}
}
init();
cin>>a>>b;
cout<<lca(a,b)<<endl;
}
}

poj 1330 Nearest Common Ancestors 单次LCA/DFS的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  2. POJ 1330 Nearest Common Ancestors(裸LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39596   Accept ...

  3. POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)

    Description A rooted tree is a well-known data structure in computer science and engineering. An exa ...

  4. poj 1330 Nearest Common Ancestors 裸的LCA

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...

  5. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  6. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  7. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  8. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  9. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

随机推荐

  1. ubuntu下使用qemu模拟ARM(六)------驱动程序【转】

    转自:http://blog.csdn.net/rfidunion/article/details/54709843 驱动程序分为在ubuntu上运行和在ARM开发板上运行两种,我们分别来进行测试 1 ...

  2. 自定义ProgressBar的加载效果

    三种方式实现自定义圆形页面加载中效果的进度条 To get a ProgressBar in the default theme that is to be used on white/light b ...

  3. cvpr densnet论文

  4. gitlab备份与还原

    1.备份 登录原服务器,执行命令: gitlab-rake gitlab:backup:create 备份后文件在如下目录,下载该文件 /var/opt/gitlab/backups 2.还原 先安装 ...

  5. 洛谷P3203弹飞绵羊

    传送门啦 非常神奇的分块大法. 每块分 √N 个元素 , 预处理出来:对于每个点,记录两个量:一个是它要弹几次才能出它所在的这个块,另外一个是它弹出这个块后到哪个点. 查询操作:一块一块跳过去 单次复 ...

  6. 关于整型Integer、Int32、Int64、IntPtr、UINT、UInt32、Cardinal、UInt64、UIntPtr、NativeUInt、Pointer、Handle

    知识点1:UIntPtr = NativeUInt = Pointer = Handle 随程序的位数改变而改变.如下: 所以以后再用指针的时候要这样:UintPtr/NativeUInt(实例) = ...

  7. select into的缺点

    当使用到select  *  into 表A  from 表 B时可以复制表的结构和数据,但是千万不要忘了给新表A添加主键和索引, 因为在使用select  into 时不会复制索引和主键,因此,当我 ...

  8. OA项目CRUD和单元测试(一)

    使用ModeFirst方法生成数据库,EntityFramework5.0. 一:Model层的模型:(根据模型生成数据库) 二:Dal层的UserInfo代码: namespace SunOA.EF ...

  9. PHP5.6中php-fpm的配置、启动、关闭和重启

    转:http://blog.csdn.net/field_yang/article/details/52401994 该文主要讲述:如何配置PHP-fpm.常见报错解决方法和php-fpm的启动.关闭 ...

  10. 高仿360界面的实现(用纯XML和脚本实现)

    源码下载:360UI 本项目XML的桌面渲染依赖GQT开源项目(请感兴趣的朋友加入QQ讨论群:101189702,在群共享文件里下载GQT源码),以下是360界面实现的全部XML代码,所有的代码都在3 ...