nltk30_Investigating bias with NLTK
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
https://www.pythonprogramming.net/investigating-nltk-tutorial/
算法测试后发现许多不准确,即偏见,负面评价更多。
In this tutorial, we discuss a few issues. The most major issue is that we have a fairly biased algorithm. You can test this yourself by commenting-out the shuffling of the documents, then training against the first 1900, and leaving the last 100 (all positive) reviews. Test, and you will find you have very poor accuracy.
Conversely, you can test against the first 100 data sets, all negative, and train against the following 1900. You will find very high accuracy here. This is a bad sign. It could mean a lot of things, and there are many options for us to fix it.
我们需要用新的数据集来建模
That said, the project I have in mind for us suggests we go ahead and use a different data set anyways, so we will do that. In the end, we will find this new data set still contains some bias, and that is that it picks up negative things more often. The reason for this is that negative reviews tend to be "more negative" than positive reviews are positive. Handling this can be done with some simple weighting, but it can also get complex fast. Maybe a tutorial for another day. For now, we're going to just grab a new dataset, which we'll be discussing in the next tutorial.
不同数据集需要不同分类器,没有统一万能的分类器,为了Twitter建模情感分析,我们需要Twitter的训练数据。Twitter数据特点是文字更短。
So now it is time to train on a new data set. Our goal is to do Twitter sentiment, so we're hoping for a data set that is a bit shorter per positive and negative statement. It just so happens that I have a data set of 5300+ positive and 5300+ negative movie reviews, which are much shorter. These should give us a bit more accuracy from the larger training set, as well as be more fitting for tweets from Twitter.
下载文件的链接downloads for the short reviews
I have hosted both files here, you can find them by going to the downloads for the short reviews. Save these files as positive.txt and negative.txt.
Now, we can build our new data set in a very similar way as before. What needs to change?
We need a new methodology for creating our "documents" variable, and then we also need a new way to create the "all_words" variable. No problem, really, here's how I did it:
python风控评分卡建模和风控常识(博客主亲自录制视频教程)
nltk30_Investigating bias with NLTK的更多相关文章
- 【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理
干货!详述Python NLTK下如何使用stanford NLP工具包 作者:白宁超 2016年11月6日19:28:43 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的 ...
- 【NLP】Python NLTK处理原始文本
Python NLTK 处理原始文本 作者:白宁超 2016年11月8日22:45:44 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开 ...
- 【NLP】Python NLTK获取文本语料和词汇资源
Python NLTK 获取文本语料和词汇资源 作者:白宁超 2016年11月7日13:15:24 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集 ...
- 【NLP】Python NLTK 走进大秦帝国
Python NLTK 走进大秦帝国 作者:白宁超 2016年10月17日18:54:10 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公 ...
- 运行nltk示例 Resource u'tokenizers punkt english.pickle' not found解决
nltk安装完毕后,编写如下示例程序并运行,报Resource u'tokenizers/punkt/english.pickle' not found错误 import nltk sentence ...
- Python文本处理nltk基础
自然语言处理 -->计算机数据 ,计算机可以处理vector,matrix 向量矩阵. NLTK 自然语言处理库,自带语料,词性分析,分类,分词等功能. 简单版的wrapper,比如textbl ...
- 自然语言27_Converting words to Features with NLTK
https://www.pythonprogramming.net/words-as-features-nltk-tutorial/ Converting words to Features with ...
- python 安装nltk,使用(英文分词处理,词干化等)(Green VPN)
安装pip命令之后: sudo pip install -U pyyaml nltk import nltk nltk.download() 等待ing 目前访问不了,故使用Green VPN htt ...
- Error=Bias+Variance
首先 Error = Bias + Variance Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输 ...
随机推荐
- Notes of Daily Scrum Meeting(11.5)
Notes of Daily Scrum Meeting(11.5) 今天是我们学习学长代码,同时学习安卓语言的第三天.我们和学长沟通了一下,仔细讨论后得出一个结论,学长在 IOS平台上的代码可以借鉴 ...
- Daily Scrum (2015/10/25)
今天终于到了周末的尾声,我们的组员也应该正常得投入到工作中了.这天晚上我(符美潇)和PM(潘礼鹏)和两个DEV开了一个小会,讨论一下我们本周的代码编写工作.我们了解到大家的代码阅读工作和相关知识的学习 ...
- 实验1 熟悉Linux开发环境 实验报告
参见http://www.cnblogs.com/lhc-java/p/4970269.html
- iOS自学-监听按钮点击、提醒框
//事件监听的问题 CGRect btn2Frame = CGRectMake(100.0, 150.0, 60.0, 44.0); //两种不同的方式创建 UIButton *btn2 = [UIB ...
- ORACLE_SQL
--建立学生表create table Student ( Sno char(9) primary key, Sname char(20)unique, Sex ...
- Beta Scrum Day 3 — 听说
听说
- “吃神么,买神么”的第二个Sprint计划
“吃神么,买神么”的第二个Sprint计划 一.现状 前台布局设计完成一个主页,可以让浏览者了解我们网站的功能,这是第一个阶段的Spring完成的事情.由于没有实际的功能体现,所以第二阶段开始 ...
- asp.net简述WP开发模式
详情请参考菜鸟教程:http://www.runoob.com/aspnet/aspnet-tutorial.html 1.ASP.NET 是一个使用 HTML.CSS.JavaScript 和服务器 ...
- TCP连接 三次握手 四次挥手
前言: TCP协议是面向连接.安全可靠.基于字节流的传输层协议,在进行http协议访问时就用到了tcp连接.在建立TCP连接时需要经历三次握手,断开连接时需要经历四次挥手.在此进行记录. 内容: TC ...
- Beta阶段——第一篇 Scrum 冲刺博客
i. 提供当天站立式会议照片一张: ii. 每个人的工作 (有work item 的ID) (1) 昨天已完成的工作: 数据存储方式改本地存储为数据库存储. (2) 今天计划完成的工作: 账单和剩余舍 ...