nltk30_Investigating bias with NLTK
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

https://www.pythonprogramming.net/investigating-nltk-tutorial/
算法测试后发现许多不准确,即偏见,负面评价更多。
In this tutorial, we discuss a few issues. The most major issue is that we have a fairly biased algorithm. You can test this yourself by commenting-out the shuffling of the documents, then training against the first 1900, and leaving the last 100 (all positive) reviews. Test, and you will find you have very poor accuracy.
Conversely, you can test against the first 100 data sets, all negative, and train against the following 1900. You will find very high accuracy here. This is a bad sign. It could mean a lot of things, and there are many options for us to fix it.
我们需要用新的数据集来建模
That said, the project I have in mind for us suggests we go ahead and use a different data set anyways, so we will do that. In the end, we will find this new data set still contains some bias, and that is that it picks up negative things more often. The reason for this is that negative reviews tend to be "more negative" than positive reviews are positive. Handling this can be done with some simple weighting, but it can also get complex fast. Maybe a tutorial for another day. For now, we're going to just grab a new dataset, which we'll be discussing in the next tutorial.
不同数据集需要不同分类器,没有统一万能的分类器,为了Twitter建模情感分析,我们需要Twitter的训练数据。Twitter数据特点是文字更短。
So now it is time to train on a new data set. Our goal is to do Twitter sentiment, so we're hoping for a data set that is a bit shorter per positive and negative statement. It just so happens that I have a data set of 5300+ positive and 5300+ negative movie reviews, which are much shorter. These should give us a bit more accuracy from the larger training set, as well as be more fitting for tweets from Twitter.
下载文件的链接downloads for the short reviews
I have hosted both files here, you can find them by going to the downloads for the short reviews. Save these files as positive.txt and negative.txt.
Now, we can build our new data set in a very similar way as before. What needs to change?
We need a new methodology for creating our "documents" variable, and then we also need a new way to create the "all_words" variable. No problem, really, here's how I did it:
python风控评分卡建模和风控常识(博客主亲自录制视频教程)
nltk30_Investigating bias with NLTK的更多相关文章
- 【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理
干货!详述Python NLTK下如何使用stanford NLP工具包 作者:白宁超 2016年11月6日19:28:43 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的 ...
- 【NLP】Python NLTK处理原始文本
Python NLTK 处理原始文本 作者:白宁超 2016年11月8日22:45:44 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开 ...
- 【NLP】Python NLTK获取文本语料和词汇资源
Python NLTK 获取文本语料和词汇资源 作者:白宁超 2016年11月7日13:15:24 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集 ...
- 【NLP】Python NLTK 走进大秦帝国
Python NLTK 走进大秦帝国 作者:白宁超 2016年10月17日18:54:10 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公 ...
- 运行nltk示例 Resource u'tokenizers punkt english.pickle' not found解决
nltk安装完毕后,编写如下示例程序并运行,报Resource u'tokenizers/punkt/english.pickle' not found错误 import nltk sentence ...
- Python文本处理nltk基础
自然语言处理 -->计算机数据 ,计算机可以处理vector,matrix 向量矩阵. NLTK 自然语言处理库,自带语料,词性分析,分类,分词等功能. 简单版的wrapper,比如textbl ...
- 自然语言27_Converting words to Features with NLTK
https://www.pythonprogramming.net/words-as-features-nltk-tutorial/ Converting words to Features with ...
- python 安装nltk,使用(英文分词处理,词干化等)(Green VPN)
安装pip命令之后: sudo pip install -U pyyaml nltk import nltk nltk.download() 等待ing 目前访问不了,故使用Green VPN htt ...
- Error=Bias+Variance
首先 Error = Bias + Variance Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输 ...
随机推荐
- spring boot之配置跨域
在启动类中配置 @Bean public WebMvcConfigurer corsConfigurer() { return new WebMvcConfigurer() { @Override p ...
- Spring的Controller映射规则
URL映射 1) 一般格式@RequestMapping(value=“/test”) 2) 可以使用模板模式映射,@RequestMapping(value=“/test/{userId}”) 3) ...
- BufferedWriter与BufferedRead --------------------------Test2
package com.test; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; ...
- 1001 A+B
代码链接 PDF链接 首先要说的是这道题的难点是如何把数字输出加入逗号,毕竟数据范围并没有超过Long.当然这个难点也不是问题,将数字转为字符串,C中就有这样的函数,然后再用 %3==0 这样来控制输 ...
- sprint冲刺(第二天)
今天的每日立会是在早上早餐后8点在宿舍讨论的,大概讨论了关于四则运算练习器APP的看法,也对一些较为基础的功能进行说明
- 结对作业:基于GUI实现四则运算
1)Coding.Net项目地址:https://git.coding.net/day_light/GUIszysLL.git 2)在开始实现程序之前,在下述PSP表格记录下你估计将在程序的各个模块的 ...
- 信安实践——自建CA证书搭建https服务器
1.理论知识 https简介 HTTPS(全称:Hyper Text Transfer Protocol over Secure Socket Layer),是以安全为目标的HTTP通道,简单讲是HT ...
- 30行js让你的rem弹性布局适配所有分辨率(含竖屏适配)(转载)
用rem来实现移动端的弹性布局是个好主意!用法如下: CSS @media only screen and (max-width: 320px), only screen and (max-devic ...
- 【百度】大型网站的HTTPS实践(二)——HTTPS加密算法介绍
大型网站的HTTPS实践(二)——HTTPS加密算法介绍 原创 网络通信/物联网 作者:AIOps智能运维 时间:2018-11-09 15:09:43 358 0 前言 在上一篇文章中,我们简要 ...
- springmvc+mybatis 处理图片(一):上传图片
一直觉得上传图片文件之类的很难,所以最后才处理图片,发现也并没有那么难,开始正文. 思路:将前台上传的file存到MutipartFile类型字段中,再将MulipartFile转换为pojo类中的b ...
