[TJOI2014]Alice and Bob[拓扑排序+贪心]
题意
给出一个序列的以每一项结尾的 \(LIS\) 的长度a[],求一个序列,使得以每一项为开头的最长下降子序列的长度之和最大。
\(n\leq 10^5\) 。
分析
最优解一定是一个排列,因为如果两个数字的大小相同,完全可以区别他们的大小,以得到更多的贡献。
考虑的 \(a\) 给定的限制,显然对于所有的相同大小的 \(a\) ,前一项 \(a_{p_1}\) 要大于后一项 \(a_{p_2}\),否则一定会产生更长的上升子序列。连边\(p_2\rightarrow p_1\)表示 \(p_2\) 的值小于\(p_1\)。
对于 \(i\),找到上一次出现 \(a[i]-1\) 的位置,并连边 $ {pos}_{a[i]-1}\rightarrow i$ ,表示 \(i\) 要大于此位置的值。
然后进行贪心的操作,每次在所有入度为0的点中选择编号最大的并赋上最小的权值。确定数值之后依次确定 \(b\) 的值就好了。
正确性显然,因为对于相同的 \(a_x\) 来说我们会优先考虑最靠后的 \(last\),同时靠前的不会向 \(last\) 后边连边。
总时间复杂度为 \(O(nlogn)\) ,主要是 \(BIT\) 的复杂度。
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<queue>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
typedef long long LL;
typedef pair<int,int> pii;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return a>b?a=b,1:0;}
const int N=1e5 + 7;
int n,edc;
int head[N],ind[N],lst[N],a[N],b[N],f[N];
struct edge{
int last,to;
edge(){}edge(int last,int to):last(last),to(to){}
}e[N*2];
void Add(int a,int b){
e[++edc]=edge(head[a],b),head[a]=edc;
++ind[b];
}
int tr[N];
int lowbit(int x){return x&-x;}
void modify(int x,int y){for(int i=x;i<=n;i+=lowbit(i)) Max(tr[i],y);}
int query(int x){int res=0;for(int i=x;i;i-=lowbit(i)) Max(res,tr[i]);return res;}
priority_queue<int>Q;
void topo(){
rep(i,1,n) if(!ind[i]) Q.push(i);int tmp=0;
while(!Q.empty()){
int u=Q.top();Q.pop();
b[u]=++tmp;
go(u)
if(--ind[v]==0) Q.push(v);
}
}
int main(){
n=gi();
rep(i,1,n){
a[i]=gi();
if(lst[a[i]]) Add(i,lst[a[i]]);
if(lst[a[i]-1]) Add(lst[a[i]-1],i);
lst[a[i]]=i;
}
topo();
LL ans=0;
for(int i=n;i;--i){
f[i]=query(b[i]-1)+1;
modify(b[i],f[i]);
ans+=f[i];
}
printf("%lld\n",ans);
return 0;
}
[TJOI2014]Alice and Bob[拓扑排序+贪心]的更多相关文章
- BZOJ_4010_[HNOI2015]菜肴制作_拓扑排序+贪心
BZOJ_4010_[HNOI2015]菜肴制作_拓扑排序+贪心 Description 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜 ...
- 2019.01.20 bzoj5158 Alice&Bob(拓扑排序+贪心)
传送门 短代码简单题. 题意简述:对于一个序列XXX,定义其两个伴随序列a,ba,ba,b,aia_iai表示以第iii个数结尾的最长上升子序列长度,bib_ibi表示以第iii个数开头的最长下降 ...
- BZOJ5158 [Tjoi2014]Alice and Bob 【贪心 + 拓扑】
题目链接 BZOJ5158 题解 题中所给的最长上升子序列其实就是一个限制条件 我们要构造出最大的以\(i\)开头的最长下降子序列,就需要编号大的点的权值尽量小 相同时当然就没有贡献,所以我们不妨令权 ...
- POJ3687 Labeling Balls(拓扑排序\贪心+Floyd)
题目是要给n个重量1到n的球编号,有一些约束条件:编号A的球重量要小于编号B的重量,最后就是要输出字典序最小的从1到n各个编号的球的重量. 正向拓扑排序,取最小编号给最小编号是不行的,不举出个例子真的 ...
- HDU 4857 逃生(反向建边的拓扑排序+贪心思想)
逃生 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submissi ...
- BZOJ2535: [Noi2010]Plane 航空管制2(拓扑排序 贪心)
题意 题目链接 Sol 非常妙的一道题. 首先不难想到拓扑排序,但是直接对原图按\(k\)从小到大拓扑排序是错的.因为当前的\(k\)大并不意味着后面的点\(k\)也大 但是在反图上按\(k\)从大到 ...
- [TJOI2014] Alice and Bob
非常好的一道思维性题目,想了很久才想出来qwq(我好笨啊) 考虑a[]数组有什么用,首先可以yy出一些性质 (设num[i]为原来第i个位置的数是什么 , 因为题目说至少有一个排列可以满足a[],所以 ...
- [LOJ2114][HNOI2015]-菜肴制作-拓扑排序+贪心
<题面> 一个蒟蒻的痛苦一天 在今天的节目集训中,麦蒙将带领大家学习9种错误的解题策略 $15\%$算法(看两个就往下走吧) 1> puts("Impossible!&qu ...
- POJ3687拓扑排序+贪心
题意: 给你n个求,他们的重量是1-n(并不是说1号求的重量是1...),然后给你m组关系a,b,表示a的重量小于b的重量,然后让你输出满足要求的前提下每个球的重量,要求字典序最小. 思路 ...
随机推荐
- 使用ModelForm表单验证
1.定义model.py model中定义的字段类型,只有在通过form进行验证的时候才有效,数据库中的字段类型与其并不完全一致,如数据库中并没有ipaddress类型.如果不通过form对字段进行验 ...
- 在 vSphere 5.x/6.0 中配置 Network Dump Collector 服务 (2002954)
vmware KB: https://kb.vmware.com/s/article/2002954?lang=zh_CN 重点配置命令: 使用 vSphere Client 连接到 vCenter ...
- marquee 标签的鼠标放上去滚动效果 鼠标离开继续滚动
效果很实用,可以轻松的实现鼠标放上去停止滚动.鼠标离开继续滚动的效果.下面是具体的用法(特别注意onMouseOver和onMouseOut是需要同时写进去才会出现比较好的效果):onMouseOut ...
- word用宏命令完美解决列表编号变黑块的问题
相信很多人跟我一样,多次定义新的多级列表,会导致列表编号变成下面这样黑块 在百度搜索结果尝试了鼠标左键选中应用样式,文档关闭后打开问题依旧: 还是得感谢万能的Google,帮我找到了答案. 问题根因: ...
- 安全预警-防范新型勒索软件“BlackRouter”
近期,出现一种新型勒索软件“BlackRouter”,开发者将其与正常软件恶意捆绑在一起,借助正常软件的下载和安装实现病毒传播,并以此躲避安全软件的查杀.目前,已知的被利用软件有AnyDesk工具(一 ...
- Mina使用总结(二)Handler
Handler的基本作用,处理接收到的客户端信息 一个简单的Handler实现如下: package com.bypay.mina.handler; import java.util.Date; im ...
- js面向对象理解
js面向对象理解 ECMAScript 有两种开发模式:1.函数式(过程化),2.面向对象(OOP).面向对象的语言有一个标志,那就是类的概念,而通过类可以创建任意多个具有相同属性和方法的对象.但是, ...
- Java8新特性 -- Lambda 方法引用和构造器引用
一. 方法引用: 若Lambda体中的内容有方法已经实现了,我们可以使用“方法引用” 要求 方法的参数和返回值类型 和 函数式接口中的参数类型和返回值类型保持一致. 主要有三种语法格式: 对象 :: ...
- codeforces 293E Close Vertices
题目链接 正解:点分治+树状数组. 点分治板子题,直接点分以后按照$w$排序,扫指针的时候把$w$合法的路径以$l$为下标加入树状数组统计就行了. 写这道题只是想看看我要写多久..事实证明我确实是老年 ...
- snapkit equalto和multipliedby方法
最近在使用snapkit过程中遇到一个问题,在github上搜索之后发现另外一个有趣的问题 frameImageContainer.snp.makeConstraints({ (make) in ma ...