1876: [SDOI2009]SuperGCD

Time Limit: 4 Sec  Memory Limit: 64 MB
Submit: 3060  Solved: 1036
[Submit][Status][Discuss]

Description

Sheng bill有着惊人的心算能力,甚至能用大脑计算出两个巨大的数的GCD(最大公约 数)!因此他经常和别人比赛计算GCD。有一天Sheng bill很嚣张地找到了你,并要求和你比 赛,但是输给Sheng bill岂不是很丢脸!所以你决定写一个程序来教训他。

Input

共两行: 第一行:一个数A。 第二行:一个数B。

Output

一行,表示A和B的最大公约数。

Sample Input

12
54

Sample Output

6

HINT

对于20%的数据,0 < A , B ≤ 10 ^ 18。
对于100%的数据,0 < A , B ≤ 10 ^ 10000。

Source

[Submit][Status][Discuss]

首先普通的GCD显然是不行的,而高精度又难以进行mod运算(至少我不会写),所以我们需要一个神奇的求最大公约数的方法。

好像是在60年代,某位前辈深感欧几里得算法求GCD的不便,对其进行了改进,适合大整数(大素数)的GCD过程,而且易于理解。

首先,我们需要了解以下知识:

  1. GCD(a, b) = k * GCD(a / k, b / k) 其中,k是a和b的一个公因数。

  2. GCD(a, b) = GCD(a / k, b) 其中,k仅为a的因数,而非b的因数。

  3. GCD(a, b) = GCD(a - b, b) 其中,a大于等于b。

对于知识1和2,当k=2的时候,有:

如果a,b都是偶数,则GCD(a, b) = 2 * GCD(a / 2, b / 2)。

如果a,b中只有一个偶数,则GCD(a, b) = GCD(a / 2, b)。(假设a是偶数)

而*2和/2的运算可以通过位运算快速实现(当然,不这么做也是可以过的)。

 #include <bits/stdc++.h>

 const int siz = ;
const int mod = ; struct Int
{
int num[siz], len; inline Int(void) {
memset(num, , sizeof(num)), len = ;
} inline Int(char *s) {
int l = strlen(s);
len = (l + ) >> ;
memset(num, , sizeof(num));
for (int i = ; i < l; ++i)
(num[(l - i + ) >> ] *= ) += s[i] - ;
} inline friend bool operator < (const Int &a, const Int &b) {
if (a.len != b.len)
return a.len < b.len;
for (int i = a.len; i; --i)
if (a.num[i] != b.num[i])
return a.num[i] < b.num[i];
return false;
} inline void sub(const Int &a) {
for (int i = ; i <= a.len; ++i)
num[i] -= a.num[i];
for (int i = ; i <= len; ++i)
if (num[i] < )
num[i] += mod, --num[i + ];
while (len > && !num[len])--len;
} inline void mul2(void) {
for (int i = ; i <= len; ++i)
num[i] <<= ;
for (int i = ; i <= len; ++i)
if (num[i] >= mod)
num[i] -= mod, ++num[i + ];
while (num[len + ])++len;
} inline void div2(void) {
for (int i = len; i; --i) {
if (i > && (num[i] & ))
num[i - ] += mod;
num[i] >>= ;
}
while (len > && !num[len])--len;
} inline bool even(void) {
return !(num[] & );
} inline bool zero(void) {
return len == && !num[];
} inline void print(void) {
printf("%d", num[len]);
for (int i = len - ; i; --i)
printf("%08d", num[i]);
putchar('\n');
}
}; inline Int gcd(Int a, Int b)
{
int bit = ;
while (true)
{
if (a.zero()) {
while (bit--)b.mul2();
return b;
}
if (b.zero()) {
while (bit--)a.mul2();
return a;
}
int flag = ;
if (a.even())++flag, a.div2();
if (b.even())++flag, b.div2();
if (flag == )
++bit;
else {
if (a < b)
b.sub(a);
else
a.sub(b);
}
}
} char a[];
char b[]; signed main(void)
{
scanf("%s", a);
scanf("%s", b);
gcd(Int(a), Int(b)).print();
}

@Author: YouSiki

BZOJ 1876: [SDOI2009]SuperGCD的更多相关文章

  1. bzoj 1876 [SDOI2009]SuperGCD(高精度+更相减损)

    1876: [SDOI2009]SuperGCD Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 2384  Solved: 806[Submit][Sta ...

  2. BZOJ 1876: [SDOI2009]SuperGCD( 更相减损 + 高精度 )

    更相减损,要用高精度.... --------------------------------------------------------------- #include<cstdio> ...

  3. BZOJ 1876 [SDOI2009] SuperGcd | PY好题

    题面就是让你求两个超级大整数,求GCD 题解: 题目本意应该是出题人想考考高精度取膜 但是可以通过一种神奇的Stein算法来做 由J. Stein 1961年提出的Stein算法很好的解决了欧几里德算 ...

  4. 【BZOJ1876】[SDOI2009]SuperGCD(数论,高精度)

    [BZOJ1876][SDOI2009]SuperGCD(数论,高精度) 题面 BZOJ 洛谷 题解 那些说数论只会\(gcd\)的人呢?我现在连\(gcd\)都不会,谁来教教我啊? 显然\(gcd\ ...

  5. bzoj 1879: [Sdoi2009]Bill的挑战

    题目链接 bzoj 1879: [Sdoi2009]Bill的挑战 题解 n<=15,装压吧 对所有字符串进行装压 可以预处理一个数组can[i][j]表示所有的字符串中,有哪些可以在第i位匹配 ...

  6. [SDOI2009][BZOJ 1876]SuperGCD

    Description Sheng bill有着惊人的心算能力,甚至能用大脑计算出两个巨大的数的GCD(最大公约 数)!因此他经常和别人比 赛计算GCD.有一天Sheng bill很嚣张地找到了你,并 ...

  7. bzoj千题计划288:bzoj1876: [SDOI2009]SuperGCD

    http://www.lydsy.com/JudgeOnline/problem.php?id=1876 高精压位GCD 对于  GCD(a, b)  a>b 若 a 为奇数,b 为偶数,GCD ...

  8. BZOJ 1876 SuperGCD

    Description Sheng bill有着惊人的心算能力,甚至能用大脑计算出两个巨大的数的GCD(最大公约数)!因此他经常和别人比赛计算GCD.有一天Sheng bill很嚣张地找到了你,并要求 ...

  9. 「BZOJ 1876」「SDOI 2009」SuperGCD「数论」

    题意 求\(\gcd(a, b)\),其中\(a,b\leq10^{10000}\) 题解 使用\(\text{Stein}\)算法,其原理是不断筛除因子\(2\)然后使用更相减损法 如果不筛\(2\ ...

随机推荐

  1. jQuery动画与特效详解

    本文主要是讲解和学习jQuery的自动显隐,渐入渐出等. 1.显示和隐藏hide()和show() 对于动画来说,显示和隐藏是最基本的效果之一,本节简单介绍jQuery的显示和隐藏. 代码如下: &l ...

  2. 如何解决MSI类型的Sharepoint Server2016 安装即点即用的office 2016 plus问题

    前提 在sharepoint server 2016安装office 2016 plus提示如下错误: 解决方法 Ø 概念 1. 即点和即用的概念:即点即用是一种通过 Internet 安装和更新 O ...

  3. bitnami redmine版本由2.3.1升级至3.2.2过程

    环境: 操作系统为ubuntu13.**版本,非长期支持版. 安装目录:/opt/redmine-2.3.1-0/ 所有者用户:root 安装过程: 1. 备份2.3.1数据库 sudo /opt/r ...

  4. Linux常见查看硬件信息指令

    CPUlscpu 查看的是CPU的统计信息./proc/cpuinfo 查看每个cpu信息,如每个CPU的型号,主频等. 内存free -m 概要查看内存情况cat /proc/meminfo 查看内 ...

  5. mac 下JDK 与 tomcat 的安装与配置

    一.Mac下JDK的安装 1.先检测Mac是否已经安装过JDK,在终端中输入java 或者 javac 显示说明,表明已经安装过JDK,JDK版本查询终端键入java -version,终端会返回JD ...

  6. 最强 Android Studio 使用小技巧和快捷键

    写在前面 本文翻译自 Android Studio Tips by Philippe Breault,一共收集了62个 Android Studio 使用小技巧和快捷键. 根据这些小技巧的使用场景,本 ...

  7. AC日记——砍树 codevs 1388

    1388 砍树  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 伐木工人米尔科需要砍倒M米长的木 ...

  8. Openjudge 1.13-21:最大质因子序列(每日两水)

    总时间限制:  1000ms 内存限制:  65536kB 描述 任意输入两个正整数m, n (1 < m < n <= 5000),依次输出m到n之间每个数的最大质因子(包括m和n ...

  9. Class.forName和ClassLoader.loadClass等

    Class类 首先,Class类里可以记载所有类的属性.方法等信息.这个也就是运行时类别标记,它记录了所有的对象(比如int,MyClass,void,数组等等)对应的类信息. Class对象 JVM ...

  10. mysql benchmark基准测试

    git项目地址: https://github.com/akopytov/sysbench 利用sysbench很容易对mysql做性能基准测试(当然这个工具很强大,除了测试主流数据库性能,还能测试其 ...