其他-pkuwc2019数学考试题目
时限150min,有windows和Ubuntu使用
十道填空题,在poj上举行,选手提交答案,系统将答案自动填入一个作用是输出答案的程序,再将该程序提交评测(由于该程序变量名为longlong,所以选手可以从此得知答案的范围为longlong储存的范围整数)
以下是题目:
- 1:一棵顶点有标号的\(8\)个节点的树,要求其中有两个点度数为\(3\),两个点度数为\(2\),其余点度数为\(1\),问有多少不同的满足条件的树(两棵树不同当且仅当存在两个编号,两编号之间是否有边的情况在两棵树中不同)
- 2:给定单位正方体,每次只能走棱和面对角线,要求路径不自交(包括不能在点和线处相交),问从正方体的一个点走到体对角线所对应的另一个点,路径最长可以多长(答案简化为\(a+\sqrt b\),要求输出\(a+b\))
- 3:给定梯形\(ABCD\),\(AB\)与\(CD\)平行,一个半径为\(r\)的圆圆心在\(AB\)上,并与\(BC,CD,AD\)相切,\(AB=200,CD=50,r=49\),问\(AD\cdot BC\)
- 4:定义\(\{F_i\}\)为斐波那契数列,其中\(F_1=F_2=1\),问\(\prod_{i=1}^{20192019}F_i\)分解质因数后\(2\)的幂
- 5:在一个\(15\times 15\)的方格中放置\(15\)个車,定义一种放置方案的权值为所有車中横纵坐标乘积最小值,问所有情况的期望权值(答案可以简化为\(\frac ab\),输出\(a+b\))
- 6:一个\(20182018\times 20182018\)的方格,其中前\(10091009\)行中,第\(i\)行删去中间\(2(i-1)\)个格子,后\(10091009\)行中,倒数第\(i\)行删去中间\(2(i-1)\)个格子,用\(1\times 2\)的多米诺骨牌覆盖这些方格(骨牌可以旋转),要求骨牌不能放在删去位置,问最多能放多少骨牌
- 7:定义数字集合\(\{A\}\)的权值为:取出集合中最小的数设为\(a\),集合中第\(a\)小的数,若集合大小小于\(a\),则权值为零。问从集合\(\{1,2,\cdots,2019\}\)中任意取\(1643\)元子集的权值期望(输出方法同\(5\))
- 8:定义\(k\)为“好的”,当且仅当对于所有的正整数\(n\),若\(n\)能被分解成\(k\)个因数的平方和,则一定能被拆分为\(k\)个因数的和。问共有多少个“好的”的数,若有无穷个输出\(-1\)
- 9:在圆上划分\(2019\)等分点,不断在两个点之间连边,每次要求连的边与之前的边相交不超过一次,问最多能连多少边
- 10:定义\(n\)为“好的”,当且仅当集合\(A=\{1,2,\cdots,n\}\)能被划分为两种颜色,是的恰好有\(2019\)对有序三元组\((a,b,c)\in A\times A\times A\)满足\(a,b,c\)都是一种颜色,且\(n|(x+y+z)\)。问所有“好的”的数之和
其他-pkuwc2019数学考试题目的更多相关文章
- NC15553 数学考试
NC15553 数学考试 题目 题目描述 今天qwb要参加一个数学考试,这套试卷一共有 \(n\) 道题,每道题qwb能获得的分数为 \(a_i\) ,qwb并不打算把这些题全做完, 他想选总共 \( ...
- 2018年长沙理工大学第十三届程序设计竞赛 H数学考试
链接:https://www.nowcoder.com/acm/contest/96/H来源:牛客网 数学考试 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...
- rhce 考试题目总结
rhce 考试题目总结归类 开机需要做的事: 检查系统版本 配置yum源 修改selinux的模式 ping一下server机器 1.分区类题目 1.1 rhcsa 第十五题 添加swap分区 要点: ...
- SEO工程师考试题目
http://www.wocaoseo.com/thread-201-1-1.html SEO,全名Search Engine Optimization,其中文名字为'搜索引擎优化' .其英 ...
- 【洛谷T7152】(考试题目)细胞
题面 题目描述 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每天每个该细胞可以分裂出 x − 1 个新的细胞. 小 X 决定第 ...
- 牛客练习赛71 数学考试 题解(dp)
题目链接 题目大意 要你求出有多少个长度为n的排列满足m个限制条件 第i个限制条件 p[i]表示前 p[i]个数不能是1-p[i]的排列 题目思路 这个感觉是dp但是不知道怎么dp 首先就是要明白如果 ...
- CSS考试题目
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- python之路之考试题目
- 牛客练习赛71 C.数学考试 (DP,容斥原理)
题意:RT 题解:先对\(p\)排个序,然后设\(dp[i]\)表示前\(i-1\)个\(p[i]\)满足条件但是\(p[i]\)不满足,即在\([1,p[i]]\)中不存在从\(p[1]\)到\(p ...
随机推荐
- React-使用装饰器
create-react-app默认不支持装饰器的,需要做以下配置. 打开 package.json ,可以看到eject.运行 npm run eject 可以让由create-react-app创 ...
- [Spark][Streaming]Spark读取网络输入的例子
Spark读取网络输入的例子: 参考如下的URL进行试验 https://stackoverflow.com/questions/46739081/how-to-get-record-in-strin ...
- python __init__() 和__new__()简析
先看下面一个例子: 如上图,例1中,构造了函数Foo,并重写了__new__()和__init__()方法,在实例化Foo()的时候,却只调用了__new__() 例2中,在实例化Too()对象时,同 ...
- 在IIS上搭建WebSocket服务器(一)
一.搭建环境 1.System.Web.WebSockets需搭建在Windows8及Server2012以上系统的上. 2.在Windows8及Server2012以上系统的上安装IIS和WebSo ...
- springdata 使用plql更新时候注意点 ?2 表示从方法中获取第二个形参的值 ?1表示从方法中获取第一个值
1.query表示的是查询 需要在操作update的方法上再次添加一个注解modifying 2.plql不是springdatajpa自带的sql功能自带的功能 自动有事务: 所以需要我们手动在se ...
- 【数学建模】灰色系统理论II-Verhulst建模-GM(1,N)-GM(2,1)建模
灰色系统理论中,GM(1,1)建模很常用,但他是有一定适应范围的. GM(1,1)适合于指数规律较强的序列,只能描述单调变化过程.对于具有一定随机波动性的序列,我们考虑使用Verhulst预测模型,或 ...
- error: command 'C:\\Program Files (x86)\\Microsoft Visual Studio 14.0\\VC\\BIN\\x86_amd64\\cl.exe' failed with exit status 2
安装mysql是出现这个错误. python3.和python2.两个的版本不一样,所以安装的东西也不一样:MySQLdb 安装mysql的连接包.工具安装 Python3.x版本:Pip insta ...
- 【题解】放球游戏B
题目描述 校园里在上活动课,Red和Blue两位小朋友在玩一种游戏,他俩在一排N个格子里,自左到右地轮流放小球,每个格子只能放一个小球.第一个人只能放1个球,之后的人最多可以放前一个人的两倍数目的球, ...
- 整体二分(SP3946 K-th Number ZOJ 2112 Dynamic Rankings)
SP3946 K-th Number (/2和>>1不一样!!) #include <algorithm> #include <bitset> #include & ...
- CMDB服务器管理系统【s5day91】:数据库表结构补充
1.表机构补充图 2.用户信息表(UserProfile) 1.解决了什么问题 1.这台服务器是谁管理的?2.真正出问题了我敢上去改代码了?不能3.所以一台机器必须有运维人员和业务负责人,但是业务负责 ...