其他-pkuwc2019数学考试题目
时限150min,有windows和Ubuntu使用
十道填空题,在poj上举行,选手提交答案,系统将答案自动填入一个作用是输出答案的程序,再将该程序提交评测(由于该程序变量名为longlong,所以选手可以从此得知答案的范围为longlong储存的范围整数)
以下是题目:
- 1:一棵顶点有标号的\(8\)个节点的树,要求其中有两个点度数为\(3\),两个点度数为\(2\),其余点度数为\(1\),问有多少不同的满足条件的树(两棵树不同当且仅当存在两个编号,两编号之间是否有边的情况在两棵树中不同)
- 2:给定单位正方体,每次只能走棱和面对角线,要求路径不自交(包括不能在点和线处相交),问从正方体的一个点走到体对角线所对应的另一个点,路径最长可以多长(答案简化为\(a+\sqrt b\),要求输出\(a+b\))
- 3:给定梯形\(ABCD\),\(AB\)与\(CD\)平行,一个半径为\(r\)的圆圆心在\(AB\)上,并与\(BC,CD,AD\)相切,\(AB=200,CD=50,r=49\),问\(AD\cdot BC\)
- 4:定义\(\{F_i\}\)为斐波那契数列,其中\(F_1=F_2=1\),问\(\prod_{i=1}^{20192019}F_i\)分解质因数后\(2\)的幂
- 5:在一个\(15\times 15\)的方格中放置\(15\)个車,定义一种放置方案的权值为所有車中横纵坐标乘积最小值,问所有情况的期望权值(答案可以简化为\(\frac ab\),输出\(a+b\))
- 6:一个\(20182018\times 20182018\)的方格,其中前\(10091009\)行中,第\(i\)行删去中间\(2(i-1)\)个格子,后\(10091009\)行中,倒数第\(i\)行删去中间\(2(i-1)\)个格子,用\(1\times 2\)的多米诺骨牌覆盖这些方格(骨牌可以旋转),要求骨牌不能放在删去位置,问最多能放多少骨牌
- 7:定义数字集合\(\{A\}\)的权值为:取出集合中最小的数设为\(a\),集合中第\(a\)小的数,若集合大小小于\(a\),则权值为零。问从集合\(\{1,2,\cdots,2019\}\)中任意取\(1643\)元子集的权值期望(输出方法同\(5\))
- 8:定义\(k\)为“好的”,当且仅当对于所有的正整数\(n\),若\(n\)能被分解成\(k\)个因数的平方和,则一定能被拆分为\(k\)个因数的和。问共有多少个“好的”的数,若有无穷个输出\(-1\)
- 9:在圆上划分\(2019\)等分点,不断在两个点之间连边,每次要求连的边与之前的边相交不超过一次,问最多能连多少边
- 10:定义\(n\)为“好的”,当且仅当集合\(A=\{1,2,\cdots,n\}\)能被划分为两种颜色,是的恰好有\(2019\)对有序三元组\((a,b,c)\in A\times A\times A\)满足\(a,b,c\)都是一种颜色,且\(n|(x+y+z)\)。问所有“好的”的数之和
其他-pkuwc2019数学考试题目的更多相关文章
- NC15553 数学考试
NC15553 数学考试 题目 题目描述 今天qwb要参加一个数学考试,这套试卷一共有 \(n\) 道题,每道题qwb能获得的分数为 \(a_i\) ,qwb并不打算把这些题全做完, 他想选总共 \( ...
- 2018年长沙理工大学第十三届程序设计竞赛 H数学考试
链接:https://www.nowcoder.com/acm/contest/96/H来源:牛客网 数学考试 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...
- rhce 考试题目总结
rhce 考试题目总结归类 开机需要做的事: 检查系统版本 配置yum源 修改selinux的模式 ping一下server机器 1.分区类题目 1.1 rhcsa 第十五题 添加swap分区 要点: ...
- SEO工程师考试题目
http://www.wocaoseo.com/thread-201-1-1.html SEO,全名Search Engine Optimization,其中文名字为'搜索引擎优化' .其英 ...
- 【洛谷T7152】(考试题目)细胞
题面 题目描述 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每天每个该细胞可以分裂出 x − 1 个新的细胞. 小 X 决定第 ...
- 牛客练习赛71 数学考试 题解(dp)
题目链接 题目大意 要你求出有多少个长度为n的排列满足m个限制条件 第i个限制条件 p[i]表示前 p[i]个数不能是1-p[i]的排列 题目思路 这个感觉是dp但是不知道怎么dp 首先就是要明白如果 ...
- CSS考试题目
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- python之路之考试题目
- 牛客练习赛71 C.数学考试 (DP,容斥原理)
题意:RT 题解:先对\(p\)排个序,然后设\(dp[i]\)表示前\(i-1\)个\(p[i]\)满足条件但是\(p[i]\)不满足,即在\([1,p[i]]\)中不存在从\(p[1]\)到\(p ...
随机推荐
- 在Mac OS X中完善PHP环境:memcache、mcrypt、igbinary
本文环境: Mac OS X 10.8.5 Xcode 5.0 Mac OS X升级到10.8.5之后,内置的Apache升级到2.2.24,PHP升级到了5.3.26.本文以此环境为基础. 本文简介 ...
- AtCoDeerくんと選挙速報 / AtCoDeer and Election Report AtCoder - 2140 (按比例扩大)
Problem Statement AtCoDeer the deer is seeing a quick report of election results on TV. Two candidat ...
- 用Python开发小学二年级口算自动出题程序
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 武汉光谷一小二年级要求家长每天要给小孩出口算题目,让孩子练习. 根据老师出题要求编写了Python程序 ...
- css3 box-shadow阴影(外阴影与外发光)讲解
基础说明: 外阴影:box-shadow: X轴 Y轴 Rpx color; 属性说明(顺序依次对应): 阴影的X轴(可以使用负值) 阴影的Y轴(可以使用负值) 阴影 ...
- Nginx 请求的11个阶段
48 1:当请求进入Nginx后先READ REQUEST HEADERS 读取头部 然后再分配由哪个指令操作 2:Identity 寻找匹配哪个Location 3:Apply Rate Limi ...
- 4.6 并发编程/IO模型
并发编程/IO模型 背景概念 IO模型概念 IO模型分类 阻塞IO (blocking IO) 特点: 两个阶段(等待数据和拷贝数据两个阶段)都被block 设置 server.setsockopt ...
- Magento2 API 服务合同设计模式 依赖注入 介绍
公共接口和API 什么是公共界面? 一个公共接口是一组代码,第三方开发者可以调用,实现或构建一个 插件 .Magento保证在没有重大版本更改的情况下,此代码在后续版本中不会更改. 模块的公共接口 标 ...
- maven 使用 log4j
Log4j是Apache的一个开源项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件,甚至是套接口服务器.NT的事件记录器.UNIX Syslog守护进程等:我们也可 ...
- [SDOI2006] 保安站岗
题目链接 第一遍不知道为什么就爆零了…… 第二遍改了一下策略,思路没变,结果不知道为什么就 A 了??? 树形 DP 经典问题:选择最少点以覆盖树上所有点(边). 对于本题,设 dp[i][0/1][ ...
- linux 触摸屏驱动
目录 linux 触摸屏驱动 输入子系统怎么写? 触摸屏事件 事件分类 事件设置 硬件配置 设计思路 完整程序 测试 ts_lib 使用 问题小结 title: linux 触摸屏驱动 tags: l ...