题目描述:这里

可持久化字典树裸题,可以作为模板使用

首先介绍一下可持久化字典树

可持久化字典树,顾名思义,就是一种可持久化的数据结构,常用于处理异或问题

我们看一下题目,发现要求一个最大异或和,但是这个最大异或和很特殊,有一个区间的限制

首先,对于异或和问题,我们一般利用异或的前缀和性质,把一个区间的异或和变成两个值的异或

于是问题就转化为,在[l,r]区间内求一个位置y,使$s_y xor s_n xor x$值最大

然后分析一下,不难想到,对于一般的最大异或问题,我们可以用01trie解决

但是此题中有区间限制,所以一般的01trie就难以使用了

这样我们引入可持久化字典树

可持久化字典树与普通字典树最大区别就在于,每次不是在原字典树上插入新的字符串,而是重建一棵字典树,然后将没有改变的信息与上一棵树共享

(也就是主席树的思想哈)

那么,在这里我们就构造一棵可持久化字典树(构造过程见代码,与主席树十分类似),然后进行查询即可

查询时,我们将$sn  xor  x$当成整体进行查询,然后像在正常的01trie上从高位向低位查找,首先查找这一位上是否可以放上不同的数,这里很好办,只需要在r和l-1上作差即可

这样就结束了

还有一个要点:对于异或和类的问题,我们要在将原序列整体右移一位,然后在空出来的首位补一个0!!!

为什么?

我们查询的是区间[l,r],而我们知道,$s[n]^s[m]$代表的是[m+1,n]的异或和!

所以,当我们把问题转化为求两个数的异或最大值时,我们事实上也应该把区间改成[l-1,r-1]!

可是,如果我们把询问区间改成了[l-1,r-1],我们在计算的时候,实际应当用的是[l-2,r-1]!

这又是为什么?

因为我们在计算时,计算方法是用区间右端点减区间左端点,可区间左端点也在区间内啊!

因此我们实际应该将左端点再向左移一位

可是哪有那么多位可移啊!万一给的l是1呢?

所以我们在首位补一个,这样就能保证查找时的正确性了。

贴代码:

#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
struct Trie
{
int to[];
int ed;
}tree[];
int s[];
int rt[];
int n,m;
int tot=;
char ch[];
void ins(int x,int num,int las)
{
rt[num]=++tot;
int now=rt[num],last=rt[las];
for(int i=;i>=;i--)
{
tree[now].to[]=tree[last].to[];
tree[now].to[]=tree[last].to[];
tree[now].ed=tree[last].ed+;
if((<<i)&x)tree[now].to[]=++tot,now=tree[now].to[],last=tree[last].to[];
else tree[now].to[]=++tot,now=tree[now].to[],last=tree[last].to[];
}
tree[now].ed=tree[last].ed+;
}
int query(int lq,int rq,int x)
{
int ret=;
int l=rt[lq],r=rt[rq];
for(int i=;i>=;i--)
{
if(x&(<<i))
{
if(tree[tree[r].to[]].ed-tree[tree[l].to[]].ed)ret|=(<<i),l=tree[l].to[],r=tree[r].to[];
else l=tree[l].to[],r=tree[r].to[];
}else
{
if(tree[tree[r].to[]].ed-tree[tree[l].to[]].ed)ret|=(<<i),l=tree[l].to[],r=tree[r].to[];
else l=tree[l].to[],r=tree[r].to[];
}
}
return ret;
}
int main()
{
scanf("%d%d",&n,&m);
n++;
ins(,,);
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
s[i]=s[i-]^x;
ins(s[i],i,i-);
}
for(int i=;i<=m;i++)
{
scanf("%s",ch);
if(ch[]=='A')
{
int x;
scanf("%d",&x);
n++;
s[n]=s[n-]^x;
ins(s[n],n,n-);
}else
{
int l,r,x;
scanf("%d%d%d",&l,&r,&x);
int s1=x^s[n];
printf("%d\n",query(l-,r,s1));
}
}
return ;
}

bzoj 3261的更多相关文章

  1. BZOJ 3261: 最大异或和

    Description 一个序列,支持两个操作. 1.在序列尾加入一个数. 2.询问 [l,r] 中与 x 异或值最大的数. \(n\leqslant 3*10^5\) Sol 可持久化 Trie 树 ...

  2. BZOJ 3261: 最大异或和( 可持久化trie )

    搞成前缀和然后就可以很方便地用可持久化trie维护了.时间复杂度O((N+M)*25) -------------------------------------------------------- ...

  3. bzoj 3261: 最大异或和 (可持久化trie树)

    3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MB Description       给定一个非负整数序列 {a},初始长度为 N.       ...

  4. BZOJ 3261: 最大异或和位置-贪心+可持久化01Trie树

    3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 3519  Solved: 1493[Submit][Status][Discu ...

  5. bzoj 3261最大异或和

    Description 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要 ...

  6. BZOJ 3261 最大异或和(算竞进阶习题)

    可持久化Trie 需要知道一个异或的特点,和前缀和差不多 a[p] xor a[p+1] xor....xor a[n] xor x = a[p-1] xor a[n] xor x 所以我们把a[1. ...

  7. 【BZOJ 3261】最大异或和【可持久化字典树】

    题意 给出一个长度为n的整数序列,给出m个操作.操作有两种.1,Ax表示在序列结尾增加x.2,Qlrx表示找到一个位置p满足 l<=p<=r,使得a[p] xor a[p+1]xor... ...

  8. bzoj 3261 最大异或和 可持久化字典树(01树)

    题目传送门 思路: 由异或的性质可得,题目要求的式子可以转化成求$max(pre[n]^x^pre[i])$,$pre[i]$表示前缀异或和,那么我们现在就要求出这个东西,所以用可持久化字典树来求,每 ...

  9. BZOJ 3261 最大异或和 可持久化Trie树

    题目大意:给定一个序列,提供下列操作: 1.在数组结尾插入一个数 2.给定l,r,x,求一个l<=p<=r,使x^a[p]^a[p+1]^...^a[n]最大 首先我们能够维护前缀和 然后 ...

随机推荐

  1. sql语句基础

    数据库库(DataBase):就是一个存储数据的仓库.为了方便数据的存储和管理,它将数据按照特定的规律存储在磁盘上.通过数据库管理系统,可以有效的组织和管理存储在数据库中的数据.SQL(Structu ...

  2. [算法]浅谈求n范围以内的质数(素数)

    汗颜,数学符号表达今天才学会呀-_-# 下面是百度百科对质数的定义 质数(prime number)又称素数,有无限个. 质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数. 求质数的方法 ...

  3. P1339 [USACO09OCT]热浪Heat Wave

    我太lj了,所以趁着夜色刷了道最短路的水题....然后,,我炸了. 题目描述: The good folks in Texas are having a heatwave this summer. T ...

  4. 在centos安装MySql的三种安装方法

    一.二进制安装MySql 1. 下载Mysql安装包 wget https://downloads.mysql.com/archives/get/file/mysql-5.6.40-linux-gli ...

  5. 【dp】导弹拦截

    题目链接 https://www.luogu.org/problemnew/show/P1020 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的 ...

  6. git学习03 - 撤销修改&删除文件

    撤销修改:git checkout -- filename :将工作区文件回到最近一次add 或者 commit的状态 撤销修改分为三种情况: 1.未提交至暂存区 使用git checkout -- ...

  7. centos7环境搭建命令List

    npm -ivh jdk-8u191-linux-x64.rpm adduser sai passwd sai whereis sudoers vim /etc/sudoers rpm -qa | g ...

  8. HBase 在HDFS上的物理目录结构

    根目录 配置项 hbase.rootdir 默认 "/hbase" 根级文件 /hbase/WALs 被HLog实例管理的WAL文件. /hbase/WALs/data-hbase ...

  9. c++析构函数调用时机

  10. oldboy s21day14装饰器模块和面试题

    # 1.为函数写一个装饰器,在函数执行之后输入 after"""def wrapper(arg): def inner(*args): arg() print('afte ...