BZOJ.4212.神牛的养成计划(Trie 可持久化Trie)
为啥hzw的题也是权限题啊
考虑能够匹配\(s1\)这一前缀的串有哪些性质。对所有串排序,能发现可以匹配\(s1\)的是一段区间,可以建一棵\(Trie\)求出来,设为\([l,r]\)。
同理匹配\(s2\)这一后缀的也是一段区间,就可以二维数点了。
然后要求的就是\([l,r]\)中的串匹配\(s2\)的有多少个。把所有串reverse,建一棵可持久化\(Trie\),在上面匹配就可以了。
排序的时候可以不用sort,可以直接在第一棵\(Trie\)上DFS。这样虽然省个\(\log\)但这题\(n\)才\(2000\),那个不用边表还有\(26\)的常数=-=。所以直接sort比较的时候暴力一位一位比好了。参考了下\(clover\_hxy\)的写法。
复杂度\(O(26n)\)。排序复杂度最坏\(O(n|s_i|\log n)\)然而根本到不了。
如果不强制在线,直接离线暴力对集合求交复杂度是线性的吧?
//439336kb 2988ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define MAXIN 1000000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=2e6+5,M=2005;
int A[N],L[M],R[M],id[M],root[M];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Trie
{
int tot,son[N][26],L[N],R[N];
void Insert(int *s,int *ed,int id)
{
for(int x=0; s!=ed; ++s)
{
x=son[x][*s]?son[x][*s]:(L[++tot]=N,son[x][*s]=tot);
L[x]=std::min(L[x],id), R[x]=std::max(R[x],id);
}
}
void Query(int *s,int *ed,int &l,int &r)
{
int x=0;
for(; s!=ed; ++s)
if(son[x][*s]) x=son[x][*s];
else {l=-1; return;}
l=L[x], r=R[x];
}
}T1;
struct Trie2
{
int tot,son[N][26],sz[N];
void Insert(int *s,int *ed,int &rt,int y)//reverse
{
for(int x=rt=++tot; s!=ed; --s)
{
memcpy(son[x],son[y],sizeof son[y]);
x=son[x][*s]=++tot, y=son[y][*s], sz[x]=sz[y]+1;
}
}
int Query(int *s,int *ed,int x,int y)//y-x
{
for(; s!=ed; --s)
if(sz[son[y][*s]]-sz[son[x][*s]]>0) x=son[x][*s], y=son[y][*s];
else return 0;
return sz[y]-sz[x];
}
}T2;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline bool cmp(int a,int b)
{
int p1=L[a],p2=L[b],l=std::min(R[a]-p1,R[b]-p2);
for(int i=0; i<=l; ++i) if(A[p1+i]!=A[p2+i]) return A[p1+i]<A[p2+i];
return R[a]-p1<R[b]-p2;
}
int main()
{
int n=read(),tot=0;
for(int i=1; i<=n; ++i)
{
L[i]=tot+1;
register char c; while(!isalpha(c=gc()));
for(; isalpha(c); A[++tot]=c-97,c=gc());
R[i]=tot, id[i]=i;
}
std::sort(id+1,id+1+n,cmp);
for(int i=1; i<=n; ++i) T1.Insert(A+L[id[i]],A+R[id[i]]+1,i);
for(int i=1; i<=n; ++i) T2.Insert(A+R[id[i]],A+L[id[i]]-1,root[i],root[i-1]);
for(int Q=read(),ans=0; Q--; )
{
register char c; while(!isalpha(c=gc()));
int cnt=0;
for(; isalpha(c); A[++cnt]=(c-97+ans)%26,c=gc());
int tmp=cnt; while(!isalpha(c=gc()));
for(; isalpha(c); A[++cnt]=(c-97+ans)%26,c=gc());
int l,r; T1.Query(A+1,A+tmp+1,l,r);
if(l!=-1) printf("%d\n",ans=T2.Query(A+cnt,A+tmp,root[l-1],root[r]));
else printf("%d\n",ans=0);
}
return 0;
}
BZOJ.4212.神牛的养成计划(Trie 可持久化Trie)的更多相关文章
- BZOJ 4212: 神牛的养成计划
4212: 神牛的养成计划 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 142 Solved: 30[Submit][Status][Discus ...
- BZOJ 4212: 神牛的养成计划 可持久化trie+trie
思路倒是不难,但是这题卡常啊 ~ code: #include <bits/stdc++.h> #define N 2000004 #define M 1000005 #define SI ...
- 【BZOJ-4212】神牛的养成计划 Trie树 + 可持久化Trie树
4212: 神牛的养成计划 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 136 Solved: 27[Submit][Status][Discus ...
- 【BZOJ4212】神牛的养成计划 Trie树+可持久化Trie树
[BZOJ4212]神牛的养成计划 Description Hzwer成功培育出神牛细胞,可最终培育出的生物体却让他大失所望...... 后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变 ...
- [BZOJ4212]神牛的养成计划
[BZOJ4212]神牛的养成计划 试题描述 Hzwer 成功培育出神牛细胞,可最终培育出的生物体却让他大失所望...... 后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变,原先决定神 ...
- BZOJ.2741.[FOTILE模拟赛]L(分块 可持久化Trie)
题目链接 首先记\(sum\)为前缀异或和,那么区间\(s[l,r]=sum[l-1]^{\wedge}sum[r]\).即一个区间异或和可以转为求两个数的异或和. 那么对\([l,r]\)的询问即求 ...
- bzoj 3261: 最大异或和 (可持久化trie树)
3261: 最大异或和 Time Limit: 10 Sec Memory Limit: 512 MB Description 给定一个非负整数序列 {a},初始长度为 N. ...
- bzoj 3261 最大异或和【可持久化trie】
因为在后面加数字又求后缀和太麻烦,所以xor[p...n]=xor[1...n]^xor[p-1...n]. 首先处理出来区间异或前缀和,对前缀和建trie树(在最前面放一棵0表示最开始的前缀和 然后 ...
- Luogu5283 十二省联考2019异或粽子(trie/可持久化trie+堆)
做前缀异或和,用堆维护一个五元组(x,l,r,p,v),x为区间右端点的值,l~r为区间左端点的范围,p为x在l~r中最大异或和的位置,v为该最大异或和,每次从堆中取出v最大的元素,以p为界将其切成两 ...
随机推荐
- table自适应大小,以及内容换行
在table的样式中加入以下两个样式: table-layout: fixed; word-wrap:break-word;
- python学习08
python中的异常处理 1.格式 try 语句块 except else finally else 是如果try语句没有异常,就执行,否则不执行 finally 不管程序是否异常,都会执行. 2.异 ...
- 13、Ajax的使用
一.AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术. a).AJAX = 异步 JavaScript 和 XML. b).AJAX 是一种用于创建快速动态网页的技术. 通过在后 ...
- 自定义Maven Archetype模板
1. 目的 自定义Maven Archetype模板目的为了把自己辛苦搭建的基础项目可以作为模板, 方便以后可以快速的创建类似项目,免去每次搭建的麻烦 2.把基础项目打包生成archetype项目 在 ...
- Eclipse 设置生成带有属性注释的getter/setter方法
1. 在开发中,一般类注释常注释在字段上面.但eclipse工具自动生成的getter和setter方法是没有注释的,而且还需要自己手动添加,这样比较麻烦.下面介绍如何通过修改eclipse的jar ...
- 题解 洛谷P3936 Coloring
考虑搜索,发现复杂度爆炸 贪心,正确性过低(~~实测爆炸~~) 于是,~~发现~~这题是模拟退火 这里不讲解退火的定义了,初学退火可以去平衡点 退火本身维护一个答案图像,答案的q,当前图 ...
- CoordinatorLayout 嵌套 AppBarLayout RecyclerView ,通过代码控制,使得CoordinatorLayout 自动滑动到tab置顶的位置
有两个方式可以实现 一:调用AppBarLayout,设置间距 val behavior = (appbar_layout.getLayoutParams() as CoordinatorLayout ...
- [转] GloVe公式推导
from: https://pengfoo.com/post/machine-learning/2017-04-11 GloVe(Global Vectors for Word Representat ...
- python使用pip 18以上版本离线安装package
在内网办公环境,常常需要使用离线安装python的软件包. 一般都会先在互联网的电脑上下载,再拷贝到内网办公机器上进行离线安装. 一般来说,我是这样做的: 1.拷贝和外网电脑上版本一致,且32位或64 ...
- ptmalloc内存分配释放
出处 分配: 1)获取分配区的锁,为了防止多个线程同时访问同一个分配区,在进行分配之前需要取得分配区域的锁.线程先查看线程私有实例中是否已经存在一个分配区,如果存在尝试对该分配区加锁,如果加锁成功,使 ...