beam 的异常处理 Error Handling Elements in Apache Beam Pipelines
Error Handling Elements in Apache Beam Pipelines

I have noticed a deficit of documentation or examples outside of the official Beam docs, as data pipelines are often intimately linked with business logic. While working with streaming pipelines, I developed a simple error handling technique, to reduce the disruption that errors cause to streaming or long-running jobs. Here I have an explanation of that technique, and a simple demo pipeline.
Apache Beam is a high level model for programming data processing pipelines. It provides language interfaces in both Java and Python, though Java support is more feature-complete.
Beam supports running in two modes: batch, and streaming. In batch mode, a finite data set is read in, processed, then output in one huge chunk. Streaming mode allows for data to be continuously read in from a streaming source (such as a message queue), processed in small chunks, and output as processing occurs. Streaming allows for analytics to be performed in “real time” as events occurs. This is extremely valuable for telemetry and logging, where engineers or other systems need feedback as events happen.
Beam pipelines are composed of a series of typed data sets (PCollections), and transforms. Transforms take a PCollection, perform a programmer-defined operation on the collection elements, then output zero or more new PCollections as a result.
The problem with these transforms is that they need to eventually operate on data. As anyone familiar with handling user input or data from large systems can attest, that data can be malformed, or just unexpected. If a bad piece of data enters the system, it may cause the entire pipeline to crash. This is a waste of time and compute resources at best, but can also result in losing in-memory streaming data, or disrupting downstream systems relying on the Beam output.
In order to stop a catastrophic failure, you need graceful error handling in your pipeline. The easiest way to do this is to add try-catch blocks within each transform, which prevents shutdown and allows all other elements to be processed.

A basic try/catch around a string conversion.
This is a start, but it’s not enough on its own. You’ll want to record failures — what data failed what transform, and why. To do this, you’ll want to create a data structure to store these errors, and an output channel for them.
The data structure for a failure should contain:
- Source data in some form (data ID, the raw data fed into the transform, or the raw data precursor that was fed into the pipeline).
- The reason for the failure.
- The transform that failed.

Example constructor of a Failure object.
We can instantiate a Failure if an exception or error is thrown during a transform.

Parsing some fields out of auditd log strings. In this example, we use an inappropriately small number type. If the number is too large for an Integer, the transform outputs a Failure object, and continues processing elements.
Next, we need to be able to record the failure for developers to reference.
Beam transforms by default only have one output PCollection, but they can output multiple PCollections. A transform can return a PCollectionTuple, which uses TupleTag objects to reference which PCollection to put an element into, and which PCollection to fetch from the TupleTag. This has many uses, and we can use it here to separately output a PCollection of successful results, and a PCollection of Failure objects.

Accessing the PCollections stored in a PCollectionTuple.
In the demo repo, successes and failures are simply written to files. In a real pipeline, they would likely be sent to a database, or a message queue for additional processing or reporting.
You may also want to extend coverage beyond just handling thrown exceptions. For example, we could validate that all data falls within expected parameters (EG all user ids are ≥ 0) and is present, to prevent logical errors, missing records, or DB insertion failures further along. That validation could be extended into the Failure class, or it could be a new Invalid class and PCollection.
This covers the handling of elements themselves, but there are many design decisions beyond that, such as: what next? Data scientists or developers must review the errors, and discard data that is outright bad. If data is merely in an unexpected format, or exposed a now-fixed bug in the pipeline, then that data should be re-processed. It’s common (moreso in batch pipelines) to retry a whole dataset after any bugs in the pipeline are addressed. This is time consuming to process, but easy to support, and allows for grouped data (sums, aggregates, etc) to be corrected by adding the missing data. Some pipelines may only retry individual elements, if the pipeline is a 1-in-1-out process.
There is a GitHub repo at https://github.com/vllry/beam-errorhandle-example which shows the full proof of concept using auditd log files.
final TupleTag<Output> successTag = new TupleTag<>() {};
final TupleTag<Input> deadLetterTag = new TupleTag<>() {};
PCollection<Input> input = /* … */;
PCollectionTuple outputTuple = input.apply(ParDo.of(new DoFn<Input, Output>() {
@Override
void processElement(ProcessContext c) {
try {
c.output(process(c.element());
} catch (Exception e) {
LOG.severe("Failed to process input {} -- adding to dead letter file",
c.element(), e);
c.sideOutput(deadLetterTag, c.element());
}
}).withOutputTags(successTag, TupleTagList.of(deadLetterTag)));
// Write the dead letter inputs to a BigQuery table for later analysis
outputTuple.get(deadLetterTag)
.apply(BigQueryIO.write(...));
// Retrieve the successful elements...
PCollection<Output> success = outputTuple.get(successTag);
// and continue processing as desired ...
beam 的异常处理 Error Handling Elements in Apache Beam Pipelines的更多相关文章
- Spring Boot 2.x 系列教程:WebFlux REST API 全局异常处理 Error Handling
摘要: 原创出处 https://www.bysocket.com 「公众号:泥瓦匠BYSocket 」欢迎关注和转载,保留摘要,谢谢! 本文内容 为什么要全局异常处理? WebFlux REST 全 ...
- Apache Beam WordCount编程实战及源码解读
概述:Apache Beam WordCount编程实战及源码解读,并通过intellij IDEA和terminal两种方式调试运行WordCount程序,Apache Beam对大数据的批处理和流 ...
- Beam编程系列之Apache Beam WordCount Examples(MinimalWordCount example、WordCount example、Debugging WordCount example、WindowedWordCount example)(官网的推荐步骤)
不多说,直接上干货! https://beam.apache.org/get-started/wordcount-example/ 来自官网的: The WordCount examples demo ...
- Apache Beam WordCount编程实战及源代码解读
概述:Apache Beam WordCount编程实战及源代码解读,并通过intellij IDEA和terminal两种方式调试执行WordCount程序,Apache Beam对大数据的批处理和 ...
- Apache Beam,批处理和流式处理的融合!
1. 概述 在本教程中,我们将介绍 Apache Beam 并探讨其基本概念. 我们将首先演示使用 Apache Beam 的用例和好处,然后介绍基本概念和术语.之后,我们将通过一个简单的例子来说明 ...
- Apache Beam入门及Java SDK开发初体验
1 什么是Apache Beam Apache Beam是一个开源的统一的大数据编程模型,它本身并不提供执行引擎,而是支持各种平台如GCP Dataflow.Spark.Flink等.通过Apache ...
- Apache Beam编程指南
术语 Apache Beam:谷歌开源的统一批处理和流处理的编程模型和SDK. Beam: Apache Beam开源工程的简写 Beam SDK: Beam开发工具包 **Beam Java SDK ...
- setjmp()、longjmp() Linux Exception Handling/Error Handling、no-local goto
目录 . 应用场景 . Use Case Code Analysis . 和setjmp.longjmp有关的glibc and eglibc 2.5, 2.7, 2.13 - Buffer Over ...
- Error Handling in ASP.NET Core
Error Handling in ASP.NET Core 前言 在程序中,经常需要处理比如 404,500 ,502等错误,如果直接返回错误的调用堆栈的具体信息,显然大部分的用户看到是一脸懵逼的 ...
随机推荐
- 美团技术沙龙01 - 58到家服务的订单调度&数据分析技术
1. 2015.4.15 到家服务的订单调度&数据分析技术 58到家· 黄海斌 @xemoaya 2.agenda • 58到家介绍 • 订单管理系统介绍 • 数据分析技术的应用 3.2015 ...
- Android BroadcastReceiver 接收收到短信的广播
一.知识介绍 1.broadcastReceiver是广播接受者,四大组件之一. 2.Android中内置了很多系统级别的广播,可以在应用程序中得到各种系统的状态信息. 3.使用场景: ①当手机没有电 ...
- SQL Server捕获发生The query processor ran out of internal resources and could not produce a query plan...错误的SQL语句
最近收到一SQL Server数据库服务器的告警邮件,告警内容具体如下所示: DATE/TIME: 10/23/2018 4:30:26 PM DESCRIPTION: The query proc ...
- 关于Java中IO流的练习
练习一:统计一个文件calcCharNum.txt中字母‘A’和'a'出现的总次数. package com.test; import java.io.File; import java.io.Fil ...
- mybatis使用oracle的nulls first/nulls last
nulls first/nulls last 顾名思义,就是在检索结果集里,有null值的时候,把null值认为是最大值,还是最小值. nulls first 放置在结果集最前面 nulls last ...
- Unknown column 'user_uid' in 'field list' sql错误解决过程
在idea中运行一直有错,找了好多个地方都找不到,以为是我的字段名字写错了,然而都是对的. 把错误的这个字段删了再打一遍就好了,
- SQL MAX() 函数
MAX() 函数 MAX 函数返回一列中的最大值.NULL 值不包括在计算中. SQL MAX() 语法 SELECT MAX(column_name) FROM table_name 注释:MIN ...
- 强大的scrollReveal库,炫酷的页面缓入效果。
首先我问来看一下这个强大的插件能做出什么效果,下面是我找的一个网站: http://kepler.gl/#/, 接下来看看官网给出的效果:https://scrollrevealjs.org/. 是不 ...
- 1.3 Windows注册表
如何打开Windows注册表呢? 方法一:Win+R打开命令行,再输入regetdit,回车. 方法二:打开计算机,进入系统所在盘,进入Windows\System32文件夹,找到regedt32,双 ...
- Java MultipartFile 使用记录
private void file(String path,MultipartFile file){ String separator = "/"; String originFi ...