[洛谷P1357] 花园
题目类型:状压\(DP\) -> 矩阵乘法
绝妙然而思维难度极其大的一道好题!
传送门:>Here<
题意:有一个环形花圃,可以种两种花:0或1. 要求任意相邻的\(M\)个花中1的个数不超过\(k\)个。总共有\(N\)个花。问方案数
解题思路
非常巧妙的一道题。
先看如何拿到\(80pts\)
\(N \leq 10^5\),也就是说可以\(O(n)\)带若干常数。我们发现影响当前状态的决策的仅仅就是离它最近的那\(M\)个花圃。由此可以进行状压\(DP\),\(dp[i][s]\)表示目前决策第\(i\)个花圃,并且左侧\(M\)个花圃的状态为\(s\)时的方案数。很明显可以通过\(i-1\)时的状态来进行转移。由于仅仅只是向右移动了一格,所以原先的右边\(M-1\)个不动,新加进来的那个最右侧的可以是1或者0。当然在写方程的时候是要倒过来的,于是我们可以得到方程$$dp[i][s] = dp[i-1][(s/2)+2^{M-1}] + dp[i-1][s/2]$$我们可以先\(dfs\)预处理出所有的可能状态。
那么题目说花圃是个环形,怎么办的?其实好办。我们令\(dp[M][s]=1\),然后一路转移到\(dp[N+M]\),这时取\(dp[N+M][s]\)作为\(s\)为初始状态(前\(M\)个花圃)的答案。因为前\(M\)个花圃等同于\(N+1..M\)的花圃。他们的状态吻合了(都是\(s\))就对了。所以我们需要所有可行的枚举\(s\)作为初始状态。答案累积
仅仅就是递推?那是否可以,矩阵乘法??
矩阵乘法优化递推,然而这道题还略微有些复杂。
首先我们可以改写一下方程,使得它更加具备\(Floyd\)的外貌。
不如浪费一层循环,去扫一个状态\(k\)。使得如果\(k\)可以转移到\(j\),那么$$dp[i][j]=\sum\limits_{}dp[i-1][k]$$或者进一步,我们连\(if\)语句也省略掉,预处理一个布尔数组,其中\(b[k][j]\)表示\(k\)能否转移到\(j\)。那么$$dp[i][j]=\sum\limits_{}dp[i-1][k]*b[k][j]$$这样一来,这个式子就是标准的矩阵乘法了。我们可以忽略\(i\)的存在,它的结果就等同于初始的\(dp\)数组乘以这个布尔数组的\(N\)次方
于是我们就可以利用矩阵乘法将\(b\)数组做一个矩阵快速幂。
答案究竟是什么?
答案究竟是什么?我们究竟用什么来乘这个\(N\)次方的结果?
我们还是参考刚才的状压做法。枚举一个\(s\),此时只有\(dp[M][s]\)为1,其他都为0. 那么我们可以想象我们其实有\(32\)个初始的项,分别是\(dp[M][0],dp[M][1],..,dp[M][s],..,dp[M][32]\)。其中只有\(dp[M][s]\)为1. 每乘一次矩阵就刷新一遍,成为\(dp[M+1][0],dp[M+1][1],..,dp[M+1][s],..,dp[M+1][32]\).直到刷新\(N\)遍以后变成\(dp[M+N][0],dp[M+N][1],..,dp[M+N][s],..,dp[M+N][32]\)。然而对于每一个\(s\),我们只需要取\(dp[N+M][s]\)作为答案。
考虑我们的\(dp[N+M][s]\)是怎么得来的?是\(dp\)矩阵依次乘以布尔矩阵的第\(s\)列的和。而我们刚才说了,只有\(dp[N+M][s]\)为1,其他都是0。因此结果就等同于是\(b[s][s]\)这一项。
我们发现根本不用枚举\(s\)!也就是说,只需要做一遍矩阵乘法——因为对于状态\(s\),对应的答案一定是\(b[s][s]\)。那么最终的答案也就是所有的\(b[s][s]\)?即矩阵的对角线之和!当然,并不是整一条对角线,要确保\(s\)是合法的。
反思
思维难度及其深的一道题,不强求满分做法,就看状压那部分吧。最关键就是想到有哪些因数能够影响我这一步的决策。动态规划应对多阶段决策问题时一般都需要这样考虑。仔细分析就会发现只有最近的\(M\)个才会有影响,然而题目又出乎意料的给了\(M \leq 5\),状压就很明显了
Code
注意矩阵存的是真正的状态,而不是状态的编号……
/*By DennyQi 2018*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define int ll
const int MAXN = 100010;
const int MOD = 1e9+7;
const int INF = 1061109567;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
int x = 0; int w = 1; register char c = getchar();
for(; c ^ '-' && (c < '0' || c > '9'); c = getchar());
if(c == '-') w = -1, c = getchar();
for(; c >= '0' && c <= '9'; c = getchar()) x = (x<<3) + (x<<1) + c - '0'; return x * w;
}
int N,M,K,Ans;
int status[40],cnt,sta,_j,_k,exist[40];
struct Matrix{
int a[40][40];
inline void clear(){
memset(a,0,sizeof a);
}
inline void set_unit(){
memset(a,0,sizeof a);
for(int i = 0; i <= 32; ++i){
a[i][i] = 1;
}
}
};
inline Matrix mul(const Matrix a, const Matrix b){
Matrix tmp,res; tmp.clear(),res.clear();
for(int i = 0; i <= 32; ++i){
for(int j = 0; j <= 32; ++j){
for(int k = 0; k <= 32; ++k){
tmp.a[i][j] = (tmp.a[i][j] + a.a[i][k] * b.a[k][j]) % MOD;
}
}
}
for(int i = 0; i <= 32; ++i){
for(int j = 0; j <= 32; ++j){
res.a[i][j] = tmp.a[i][j];
}
}
return res;
}
Matrix ans,a;
inline bool check(int s){
int res(0);
while(s){
if(s & 1) ++res;
s >>= 1;
}
return res <= K;
}
void dfs(int x, int s){
if(x == M){
if(check(s)){
status[++cnt] = s;
a.a[(s>>1)+(1<<(M-1))][s] = 1;
a.a[s>>1][s] = 1;
exist[s] = 1;
}
return;
}
dfs(x+1, s);
dfs(x+1, s+(1<<x));
}
inline void ksm(int k){
while(k > 0){
if(k & 1) ans = mul(ans, a);
a = mul(a, a);
k /= 2;
}
}
signed main(){
N = read(), M = read(), K = read();
dfs(0, 0);
ans.set_unit();
ksm(N);
for(int i = 0; i <= 32; ++i){
if(exist[i]){
Ans = (Ans + ans.a[i][i]) % MOD;
}
}
printf("%lld", Ans);
return 0;
}
[洛谷P1357] 花园的更多相关文章
- 题解:洛谷P1357 花园
题解:洛谷P1357 花园 Description 小 L 有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为 \(1∼n\).花园 \(1\) 和 \(n\) 是相邻的. 他的环形花园每天都会换 ...
- 洛谷 P1357 花园 解题报告
P1357 花园 题目描述 小\(L\)有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为\(1~N(2<=N<=10^{15})\).他的环形花园每天都会换一个新花样,但他的花园都不 ...
- 洛谷P1357 花园(状态压缩 + 矩阵快速幂加速递推)
题目链接:传送门 题目: 题目描述 小L有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为1~N(<=N<=^).他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则,任意相邻 ...
- 洛谷 P1357 花园
题意简述 一个只含字母C和P的环形串 求长度为n且每m个连续字符不含有超过k个C的方案数 题解思路 由于\(m<=5\)所以很显然状压 但由于\(n<=10^{15}\).可以考虑用矩阵加 ...
- 洛谷教主花园dp
洛谷-教主的花园-动态规划 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价 ...
- 洛谷 P2056 BZOJ 2743 [HEOI2012]采花
//表示真的更喜欢洛谷的题面 题目描述 萧芸斓是 Z国的公主,平时的一大爱好是采花. 今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花.花园足够大,容纳了 n 朵花,花有 c 种颜色(用整数 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
随机推荐
- 【Dojo 1.x】笔记5 使用本地引用
习惯用CDN引用的同学肯定会知道还有一种叫本地引用,这篇笔记测试本地引用. Dojo SDK下载地址:点我 下载中间的Release Package即可,如果希望下载完整包(Full Source), ...
- 【Dojo 1.x】笔记2 使用服务器环境及使用模块
又开坑了.上次静态html页面完成本地module的引用,算是成功了,但是并不知道是怎么运作的,没关系慢慢来. 我用的环境是VSCode,这次因为官方说要在服务器环境下运行,所以就用上了VSCode的 ...
- AndroidTV端的requestFocus()问题
每次开机盒子或者电视的时候,发现给某些控件设置请求焦点 requestFocus 会失效 最终的解决办法就是延时请求 view.postDelayed(new Runnable() { @Overri ...
- Docker 创建 Confluence6.12.2 中文版
目录 目录 1.介绍 1.1.什么是Confluence? 2.Confluence的官网在哪里? 3.如何下载安装? 4.对 Confluence 进行配置 4.1.设置 Confluence 4. ...
- 010 Editor v8.0.1(32 - bit) 算法逆向分析、注册机编写
010 Editor 的逆向分析整体算下来还是比较简单的,将程序拖入OD,通过字符串搜索定位到核心代码,经过分析,主要是如下图所示的两个关键函数,返回正确的值,才算是注册成功. 00409C9B 这个 ...
- 3星|《给产品经理讲技术》:APP开发技术介绍,没有技术背景的话恐怕只能看懂书中的比喻和结论
基本是APP开发涉及到的相关技术的入门级介绍.涉及到的知识点与技术细节比较多,不少技术相关的内容并没有像标题暗示的那样没有技术背景也可以看懂,而是涉及到许多专业的术语.原理.也有一些内容是用比喻的方法 ...
- HTML之间互相传参
如图所示,在index.html详情展示中给detailsPanel穿参数,在detailsPanel中获取到参数写ajax到后台获取json数据,那么如何在detailsPanel.html中获取传 ...
- topjui中combobox使用
1.创建combobox的方法 常用的一种是通过Js定义,一种是通过在input输入框中定义,还有一种通过在selete标签中定义,可以去看easyui的官方文档 http://www.jeasyui ...
- Ajax 与文件上传
一 Ajax篇 1 ajax简介(Asynchronous Javascript And XML) 异步,Js,XML,即使用Javascript语言与服务器进行异步交互,传输的数据为xml(可扩展标 ...
- 【English】20190312
tokens记号 [ˈtoʊkən] delimiter characters分隔符字符 [dɪ'lɪmɪtə] [ˈkærɪktɚs] argument论据主题[ˈɑ:rgjumənt] ...