jzoj6101. 【GDOI2019模拟2019.4.2】Path
题目链接:https://jzoj.net/senior/#main/show/6101
记\(f_i\)为从\(i\)号点走到\(n\)号点所花天数的期望
那么根据\(m\)条边等可能的出现一条和一定会往期望值较小的点走的贪心策略我们可以得到
\]
其中当\(i,j\)不相连的时候可将\(f_j\)看做无限大
我们考虑在该式子中一共选取了\(sum\)次\(f_j\),也就是\(m-sum\)次\(f_i\),那么
\]
两边同时乘\(m\)并移项
\]
即
\]
我们将\(f_i\)看做到\(n\)点的距离,直接跑最短路,当从队列首部拎出来的\(u\)存在一条边\((u,v)\)使得当前的\(f_v\)比\(f_u\)大时就更新答案
那么我们如何维护这个优先队列呢?
我们假设当前用\(f_k\)去更新\(f_i\),那么就会有
\]
去分母化简得到
\]
所以直接按照\(\frac{\sum f_j+m}{sum}\)的值从小到大维护该队列即可
#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define lowbit(x) (x)&(-x)
#define rep(i,a,b) for (int i=a;i<=b;i++)
#define per(i,a,b) for (int i=a;i>=b;i--)
#define maxd 1000000007
typedef long long ll;
const int N=100000;
const double pi=acos(-1.0);
struct node{
int to,nxt;
}sq[200200];
struct hnode{
int u,sum;double f;
};
bool operator<(const hnode &p,const hnode &q)
{
return p.f*q.sum>q.f*p.sum;
}
priority_queue<hnode> q;
int n,m,all=0,head[100100],sum[100100];
double f[100100];
bool vis[100100];
int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
}
void add(int u,int v)
{
all++;sq[all].to=v;sq[all].nxt=head[u];head[u]=all;
}
double dij()
{
memset(vis,0,sizeof(vis));
sum[n]=1;q.push((hnode){n,1,0});
while (!q.empty())
{
int u=q.top().u;q.pop();
if (vis[u]) continue;
vis[u]=1;int i;
double now=(f[u]+m)/sum[u];
if (u==1) return (f[u]+m)/sum[u];
else if (u==n) now=0;
for (i=head[u];i;i=sq[i].nxt)
{
int v=sq[i].to;
if ((sum[v]==0) || ((f[v]+m)>now*sum[v]))
{
f[v]+=now;sum[v]++;
if (!vis[v]) q.push((hnode){v,sum[v],f[v]+m});
}
}
}
}
int main()
{
freopen("path.in","r",stdin);
freopen("path.out","w",stdout);
n=read();m=read();
rep(i,1,m)
{
int u=read(),v=read();
add(u,v);add(v,u);
}
double ans=dij();
printf("%0.8lf",ans);
return 0;
}
jzoj6101. 【GDOI2019模拟2019.4.2】Path的更多相关文章
- [jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)
题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i, ...
- jzoj6099. 【GDOI2019模拟2019.4.1】Dist
题目链接:https://jzoj.net/senior/#main/show/6099 考虑直接统计某个点到其它所有点的距离和 我们先把整个团当成一个点建图,处理出任意两个团之间的距离\(dis(i ...
- [JZOJ6075]【GDOI2019模拟2019.3.20】桥【DP】【线段树】
Description N,M<=100000,S,T<=1e9 Solution 首先可以感受一下,我们把街道看成一行,那么只有给出的2n个点的纵坐标是有用的,于是我们可以将坐标离散化至 ...
- [jzoj 6093] [GDOI2019模拟2019.3.30] 星辰大海 解题报告 (半平面交)
题目链接: https://jzoj.net/senior/#contest/show/2686/2 题目: 题解: 说实话这题调试差不多花了我十小时,不过总算借着这道题大概了解了计算几何的基础知识 ...
- [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)
题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...
- [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)
题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...
- [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)
题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...
- [jzoj 4528] [GDOI2019模拟2019.3.26] 要换换名字 (最大权闭合子图)
题目链接: https://jzoj.net/senior/#contest/show/2683/0 题目: 题解: 不妨枚举一个点,让两颗树都以这个点为根,求联通块要么点数为$0$,要么包括根(即联 ...
- [jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)
题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\ ...
随机推荐
- 少侠学代码系列(一)->JS起源
少侠:喂,有人吗?赶紧出来接客了,有没有人啊 帅气的我:来了来了,少侠有何吩咐? 少侠:把你们店里的秘籍呈上来我要学JS 帅气的我:少侠,别这样,我们秘籍是不外传的,祖上传下来的规矩,传人妖不传男女. ...
- Cesium 之简介以及离线部署运行篇
前言 cesium 官网的api文档介绍地址cesium官网api,里面详细的介绍 cesium 各个类的介绍,还有就是在线例子:cesium 官网在线例子,这个也是学习 cesium 的好素材. C ...
- 支持scrollTo的RecycleView
RecycleView内部没有帮我们实现ScrollTo的方法,不过帮我们实现了ScrollBy,我们可以通过ScrollBy自定义一个支持scrollTo的RecycleView. public c ...
- Python:运算类内建函数列举
1. divmod() python3.x版本中,整除运算用 “//”,取余可以用 “%”,在某些问题中要同时得到商和余数就需要两步运算,而使用divmod函数可以同时得到商和余数: 函数有两个参数d ...
- 测者的性能测试手册:Yourkit 监控JettyYourkit 监控Jetty
Yourkit是收费工具,每一个email可以免费试用15天,觉得好的朋友可以自行选择购买 服务器端下载yourkit(java) Windows安装yourkit Java Profiler 201 ...
- nginx配置静态项目
当nignx可以加载下面的这个service时 server { listen 8085; server_name 1.192.60.82; location / { root /etc/nginx ...
- Python3漏洞扫描工具 ( Python3 插件式框架 )
目录 Python3 漏洞检测工具 -- lance screenshot requirements 关键代码 usage documents README Guide Change Log TODO ...
- C#中的值类型和引用类型,深拷贝,浅拷贝
from https://www.jianshu.com/p/2d27b06e253f 一.C#中的值类型和引用类型 概念 值类型直接存储其值. 引用类型存储对值的引用. 说起来有些拗口,其本质是Va ...
- 基本数据对象(int,float,str)
一.整型(int) # int对象初始化 x = 2 y = int(3) n = int("A3",12) # 运算符(+.-.*././/.%.**) ''' 相关的函数 '' ...
- linux -- 添加、修改、删除路由
在日常的使用中,或者在服务器中,有两个网卡配置两个地址,访问不同的网络段,这种情况是非常常见的现象,但是,我们需要额外的添加路由表来决定发送的数据包经过正确的网关和interface才能正确的进行通信 ...