题目链接:https://jzoj.net/senior/#main/show/6101

记\(f_i\)为从\(i\)号点走到\(n\)号点所花天数的期望

那么根据\(m\)条边等可能的出现一条和一定会往期望值较小的点走的贪心策略我们可以得到

\[f_i=\frac{1}{m}\sum min(f_i,f_j)+1
\]

其中当\(i,j\)不相连的时候可将\(f_j\)看做无限大

我们考虑在该式子中一共选取了\(sum\)次\(f_j\),也就是\(m-sum\)次\(f_i\),那么

\[f_i=\frac{1}{m}(\sum _{f_j<f_i}f_j+(m-sum)*f_i)+1
\]

两边同时乘\(m\)并移项

\[sum*f_i=\sum f_j+m
\]

\[f_i=\frac{\sum f_j+m}{sum}
\]

我们将\(f_i\)看做到\(n\)点的距离,直接跑最短路,当从队列首部拎出来的\(u\)存在一条边\((u,v)\)使得当前的\(f_v\)比\(f_u\)大时就更新答案

那么我们如何维护这个优先队列呢?

我们假设当前用\(f_k\)去更新\(f_i\),那么就会有

\[\frac{\sum f_j+m+f_k}{sum+1}<\frac{\sum f_j+m}{sum}
\]

去分母化简得到

\[f_k<\frac{\sum f_j+m}{sum}
\]

所以直接按照\(\frac{\sum f_j+m}{sum}\)的值从小到大维护该队列即可

#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define lowbit(x) (x)&(-x)
#define rep(i,a,b) for (int i=a;i<=b;i++)
#define per(i,a,b) for (int i=a;i>=b;i--)
#define maxd 1000000007
typedef long long ll;
const int N=100000;
const double pi=acos(-1.0);
struct node{
int to,nxt;
}sq[200200]; struct hnode{
int u,sum;double f;
};
bool operator<(const hnode &p,const hnode &q)
{
return p.f*q.sum>q.f*p.sum;
}
priority_queue<hnode> q;
int n,m,all=0,head[100100],sum[100100];
double f[100100];
bool vis[100100]; int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
} void add(int u,int v)
{
all++;sq[all].to=v;sq[all].nxt=head[u];head[u]=all;
} double dij()
{
memset(vis,0,sizeof(vis));
sum[n]=1;q.push((hnode){n,1,0});
while (!q.empty())
{
int u=q.top().u;q.pop();
if (vis[u]) continue;
vis[u]=1;int i;
double now=(f[u]+m)/sum[u];
if (u==1) return (f[u]+m)/sum[u];
else if (u==n) now=0;
for (i=head[u];i;i=sq[i].nxt)
{
int v=sq[i].to;
if ((sum[v]==0) || ((f[v]+m)>now*sum[v]))
{
f[v]+=now;sum[v]++;
if (!vis[v]) q.push((hnode){v,sum[v],f[v]+m});
}
}
}
} int main()
{
freopen("path.in","r",stdin);
freopen("path.out","w",stdout);
n=read();m=read();
rep(i,1,m)
{
int u=read(),v=read();
add(u,v);add(v,u);
}
double ans=dij();
printf("%0.8lf",ans);
return 0;
}

jzoj6101. 【GDOI2019模拟2019.4.2】Path的更多相关文章

  1. [jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)

    题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i, ...

  2. jzoj6099. 【GDOI2019模拟2019.4.1】Dist

    题目链接:https://jzoj.net/senior/#main/show/6099 考虑直接统计某个点到其它所有点的距离和 我们先把整个团当成一个点建图,处理出任意两个团之间的距离\(dis(i ...

  3. [JZOJ6075]【GDOI2019模拟2019.3.20】桥【DP】【线段树】

    Description N,M<=100000,S,T<=1e9 Solution 首先可以感受一下,我们把街道看成一行,那么只有给出的2n个点的纵坐标是有用的,于是我们可以将坐标离散化至 ...

  4. [jzoj 6093] [GDOI2019模拟2019.3.30] 星辰大海 解题报告 (半平面交)

    题目链接: https://jzoj.net/senior/#contest/show/2686/2 题目: 题解: 说实话这题调试差不多花了我十小时,不过总算借着这道题大概了解了计算几何的基础知识 ...

  5. [jzoj 6080] [GDOI2019模拟2019.3.23] IOer 解题报告 (数学构造)

    题目链接: https://jzoj.net/senior/#main/show/6080 题目: 题意: 给定$n,m,u,v$ 设$t_i=ui+v$ 求$\sum_{k_1+k_2+...+k_ ...

  6. [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)

    题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...

  7. [jzoj 6086] [GDOI2019模拟2019.3.26] 动态半平面交 解题报告 (set+线段树)

    题目链接: https://jzoj.net/senior/#main/show/6086 题目: 题解: 一群数字的最小公倍数就是对它们质因数集合中的每个质因数的指数取$max$然后相乘 这样的子树 ...

  8. [jzoj 4528] [GDOI2019模拟2019.3.26] 要换换名字 (最大权闭合子图)

    题目链接: https://jzoj.net/senior/#contest/show/2683/0 题目: 题解: 不妨枚举一个点,让两颗树都以这个点为根,求联通块要么点数为$0$,要么包括根(即联 ...

  9. [jzoj 6087] [GDOI2019模拟2019.3.26] 获取名额 解题报告 (泰勒展开+RMQ+精度)

    题目链接: https://jzoj.net/senior/#main/show/6087 题目: 题解: 只需要统计$\prod_{i=l}^r (1-\frac{a_i}{x})$ =$exp(\ ...

随机推荐

  1. QT 启动shell脚本

    1.QProcess *p = new QProcess(this); 2.QString str = qApp->applicationDirPath() + "/update.sh ...

  2. Linux查看分区文件系统类型总结

    在Linux 中如何查看分区的文件系统类型,下面总结几种查看分区文件系统类型的方法. 1: df -T 命令查看 这个是最简单的命令,文件系统类型在Type列输出.只可以查看已经挂载的分区和文件系统类 ...

  3. 前后端分离djangorestframework—— 接入第三方的验证码平台

    关于验证码部分,在我这篇文章里说的挺详细的了:Python高级应用(3)—— 为你的项目添加验证码 这里还是再给一个前后端分离的实例,因为极验官网给的是用session作为验证的,而我们做前后端分离的 ...

  4. js 学习之路6: if...else...条件语句的使用

    1.1 if (...) { ... } else { ... } <!DOCTYPE html> <html> <meta http-equiv="Conte ...

  5. 【任务】Python语言程序设计.MOOC学习

    [博客导航] [Python导航] 任务 18年11月29日开始,通过9周时间跨度,投入约50小时时间,在19年1月25日之前,完成中国大学MOOC平台上的<Python语言程序设计>课程 ...

  6. Java使用volatile实现多线程输出ABC共10次

    问题 有A,B,C三个线程, A线程输出A, B线程输出B, C线程输出C.要求,同时启动三个线程, 按顺序输出ABC, 循环10次. 今天在写多线程的时候找例子,见到了这样一个题,觉得不难,但是在网 ...

  7. Ubuntu18.04 安装jdk1.8

    1.oracle官网下载压缩包,点击链接. 2.解压 1 tar -zxvf jdk-8u171-linux-x64.tar.gz 3.移动到制定目录 ##将文件从下载目录 挪到/usr/local下 ...

  8. 并发框架Disruptor场景应用

    今天用一个停车场问题来加深对Disruptor的理解.一个有关汽车进入停车场的问题.当汽车进入停车场时,系统首先会记录汽车信息.同时也会发送消息到其他系统处理相关业务,最后发送短信通知车主收费开始.看 ...

  9. CentOS 7 安装Kubernetes(单机版)

    一.关闭CentOS自带的防火墙服务 #  systemctl disable firewalld # systemctl  stop firewalld 二.安装etcd和Kubernetes软件( ...

  10. matlab读取csv文件数据并绘图

    circle.m(画二维圆的函数) %该函数是画二维圆圈,输入圆心坐标和半径%rectangle()函数参数‘linewidth’修饰曲线的宽度%'edgecolor','r',edgecolor表示 ...