【HNOI 2016】大数
Problem
Description
小 B 有一个很大的数 \(S\),长度达到了 \(N\) 位;这个数可以看成是一个串,它可能有前导 \(0\),例如 00009312345 。小 B 还有一个素数 \(P\)。
现在,小 B 提出了 \(M\) 个询问,每个询问求 \(S\) 的一个子串中有多少子串是 \(P\) 的倍数(\(0\) 也是 \(P\) 的倍数)。例如 \(S\) 为 0077 时,其子串 007 有六个子串:0, 0, 7, 00, 07, 007;显然 0077 的子串 077 的六个子串都是素数 \(7\) 的倍数。
Input Format
第一行一个整数:\(P\)。
第二行一个串:\(S\)。
第三行一个整数:\(M\)。
接下来 \(M\) 行,每行两个整数 \(\text{fr}, \text{to}\),表示对 \(S\) 的子串 \(S[\text{fr} \ldots \text {to}]\) 的一次询问。
注意:\(S\) 的最左端的数字的位置序号为 \(1\);例如 \(S\) 为 \(213567\),则 \(S[1]\) 为 \(2\),\(S[1 \ldots 3]\)为 \(213\)。
Output Format
输出 \(M\) 行,每行一个整数,第 \(i\) 行是第 \(i\) 个询问的答案。
Sample
Input
11
121121
3
1 6
1 5
1 4
Output
5
3
2
Explanation
Explanation for Input
第一个询问问的是整个串,满足条件的子串分别有:121121、2112、11、121、121。
Range
对于所有的数据,\(N,M \leq 100000\),\(P\) 为素数。
Algorithm
莫队
Mentality
嗯 \(......\) 比较送分的题目。
支持 \(nlog\) 的数据范围,可离线的区间询问,且问的内容一看就可以莫队 = = 。
我们发现,设 \(r[i]\) 为 \([i,n]\) 组成的数,那么有:
\]
我们把分母移到左边去,那么便有:
num(i,j)\cdot 10^{n-j}\ mod\ P=(r[i]-r[j+1])\ mod\ P \\
num(i,j)\cdot 10^{n-j}\ mod\ P=r[i]\ mod\ P-r[j+1]\ mod\ P
\]
那么,当 \(r[i]\) 与 \(r[j+1]\) 对 \(P\) 取模的余数相同,那等式就必定等于 \(0\) ,则有:
\]
那么当 \(10^{n-j}\ mod\ P\neq 0\) 时,因为最后的结果为 \(0\) ,所以必有 \(num(i,j)\ mod\ P=0\) 。
也就是说,当 \(P\neq 2,5\) 时,\(num(i,j)\) 为 \(P\) 的倍数当且仅当 \(r[i]\) 和 \(r[j+1]\) 关于模数 \(P\) 同余。
那么我们的问题就变成了一个区间内有多少属性相同的点对了,这个就很莫队了。
至于 \(P=2,5\) 的时候,特判处理即可。我们可以直接通过判断一个数的末位来判断这个数是否为 \(P\) 的倍数,我们可以直接记前缀和哇。
Code
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n, m, mod, size, rest[100002], L, R, cnt, now[100001], ano[10][100001],
sum[100001];
char S[100001];
long long ans, answer[100001], q[100001];
struct Que {
int l, r, q, d;
} k[100001];
struct node {
int d, rest;
} ls[100002];
bool cmp(Que a, Que b) { return a.q == b.q ? a.r < b.r : a.q < b.q; }
bool cmp2(node a, node b) { return a.rest < b.rest; }
void Del(int x) { ans -= --now[rest[x]]; }
void Add(int x) { ans += now[rest[x]]++; }
int main() {
cin >> mod >> S >> m;
n = strlen(S);
size = sqrt(n);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &k[i].l, &k[i].r);
k[i].q = k[i].l / size;
k[i].r++;
k[i].d = i;
}
if (mod == 2 || mod == 5) {
for (int i = n; i > 0; i--) {
sum[i] = sum[i + 1];
if ((S[i - 1] - '0') % mod == 0) sum[i]++;
} //记录后缀中有多少个数是合法末位
for (int i = n; i > 0; i--)
q[i] =
sum[i] + q[i + 1]; //记录后缀的后缀和,也就是后缀中有多少合法的区间
for (int i = 1; i <= m; i++)
printf(
"%lld\n",
q[k[i].l] - q[k[i].r] -
(k[i].r - k[i].l) *
sum[k[i].r]); //计算答案:区间的后缀和相减,再减去区间之外的末位对区间的贡献
return 0;
}
sort(k + 1, k + m + 1, cmp);
for (int i = 1; i <= 9; i++) {
ano[i][1] = i % mod;
for (int j = 2; j <= n; j++)
ano[i][j] =
1ll * ano[i][j - 1] * 10 % mod; //计算每个数作为第 j 位时在 %P 下的值
}
for (int i = n; i >= 1; i--) {
ls[i].rest = (ls[i + 1].rest + ano[S[i - 1] - '0'][n - i + 1]) %
mod; //记录每个 r[i] 的 %P 之后的值
ls[i].d = i;
}
sort(ls + 1, ls + n + 1, cmp2);
for (int i = 1; i <= n; i++) {
if (ls[i].rest > ls[i - 1].rest) cnt++;
rest[ls[i].d] = cnt;
} //将余数离散化才能存
L = k[1].l, R = k[1].l - 1;
for (int i = 1; i <= m; i++) {
while (L < k[i].l) Del(L++);
while (L > k[i].l) Add(--L);
while (R < k[i].r) Add(++R);
while (R > k[i].r) Del(R--);
answer[k[i].d] = ans;
}
for (int i = 1; i <= m; i++) printf("%lld\n", answer[i]);
}
【HNOI 2016】大数的更多相关文章
- [HNOI 2016]大数
Description 题库链接 给你一个长度为 \(n\) ,可含前导零的大数,以及一个质数 \(p\) . \(m\) 次询问,每次询问你一个大数的子区间 \([l,r]\) ,求出子区间中有多少 ...
- [HNOI 2016]树
Description 题库链接 给你一棵 \(N\) 个节点根节点为 \(1\) 的有根树,结点的编号为 \(1\sim N\) :我们称这颗树为模板树.需要通过这棵模板树来构建一颗大树.构建过程如 ...
- 【BZOJ 4539】【HNOI 2016】树
http://www.lydsy.com/JudgeOnline/problem.php?id=4539 今天测试唯一会做的一道题. 按题目要求,如果暴力的把模板树往大树上仍,最后得到的大树是$O(n ...
- hnoi 2016 省选总结
感觉省选好难的说...反正我数据结构太垃圾正解想到了也打不出来打一打暴力就滚粗了! DAY1 0+20+30 DAY2 60-20+0+60 最后170-20分,暴力分还是没有拿全! 然而这次是给了5 ...
- HNOI 2016 省队集训日记
第一天 DeepDarkFantasy 从东京出发,不久便到一处驿站,写道:日暮里. ——鲁迅<藤野先生> 定义一个置换的平方为对1~n的序列做两次该置换得到的序列.已知一个置换的平方, ...
- 数据结构(树链剖分,堆):HNOI 2016 network
2215. [HNOI2016]网络 ★★★☆ 输入文件:network_tenderRun.in 输出文件:network_tenderRun.out 简单对比时间限制:2 s 内存 ...
- [HNOI 2016]最小公倍数
Description 题库链接 给定一张 \(N\) 个顶点 \(M\) 条边的无向图(顶点编号为 \(1,2,\cdots,n\) ),每条边上带有权值.所有权值都可以分解成 \(2^a\time ...
- [HNOI 2016]序列
Description 题库链接 给你一个长度为 \(n\) 的序列 \(A\) ,给出 \(q\) 组询问.每次询问 \([l,r]\) ,求该区间内所有的子序列中最小值的和. \(1\leq n, ...
- [HNOI 2016]网络
Description 一个简单的网络系统可以被描述成一棵无根树.每个节点为一个服务器.连接服务器与服务器的数据线则看做 一条树边.两个服务器进行数据的交互时,数据会经过连接这两个服务器的路径上的所有 ...
随机推荐
- memory error python报错
np.array时报错内存溢出,检查了python安装的是64位版本,通过下面dtype=np.uint8不再报错texts_vec = (np.array(texts_vec,dtype=np.ui ...
- jq点击事件不生效,效果只闪现一次又立马消失的原因?
出现的问题:jq点击事件不生效,点击的时候效果实现但又立马消失,页面重新刷新了一次 可能出现的原因: a标签href属性的原因,虽然点击事件生效,但页面又刷新了一次,所以没有效果,只闪了一次 解决方案 ...
- (转)cookie和session的区别
存放位置不同 cookie数据存放在客户的浏览器上,session数据放在服务器上. 安全程度不同cookie不是很安全,别人可以解析存放在本地的cookie并进行cookie欺骗,考虑到安全应当使用 ...
- OO第二单元总结(多线程的电梯调度)
经过第一单元作业的训练,在做第二单元的作业的时候,要更加的有条理.但是第二次作业多线程的运行,带来了更多的运行的不确定性.呈现出来就是程序会出现由于线程安全问题带来的不可复现的bug.本单元的作业也让 ...
- https://blog.csdn.net/uftjtt/article/details/79044186
https://blog.csdn.net/uftjtt/article/details/79044186
- RNA-seq标准化
你的 heatmap 可能用错数据了 (组间表达量标准化) http://www.genek.tv/article/24 RNA-seq的标准化方法罗列 https://www.jianshu.com ...
- dataguard日志自动删除
dataguard日志自动删除 1.判断日志是否已经应用到今天.2.删除3天前的日志.3.主机.备机分别配置 ----check_del_arch.sh#!/bin/shORACLE_HOME=/ho ...
- HTML学记笔记
<!DOCTYPE html><html lang="zh-CN"><head> <meta charset="UTF-8&qu ...
- JVM探秘6--图解虚拟机栈的局部变量表和操作数栈工作流程
案例代码如下: public class JVMTest { public static Integer num = 10; public int add(int i){ int j = 5; int ...
- 解决pycharm左侧项目文件名中文字体乱码情况?中文显示口口口口.
解决pycharm左侧项目文件名中文字体乱码情况?中文显示口口口口. 点击file,进入settings 出现 Appearance & Behavior 点击Appearance UI Op ...