[HNOI2008] 玩具装箱 D2 T3 斜率优化DP
Description
Input
Output
Sample Input
Sample Output
#include<stdio.h>
#include<algorithm>
#define inf 1e18
using namespace std;
int n,l,sum[],a[];
int que[],h,t;
long long f[],q[],p[];
long long q1(long long x){return f[x]+q[x]*q[x];}
double count(int x,int y){return (q1(x)-q1(y))*1.0/(2.0*(q[x]-q[y]));}
int main()
{
scanf("%d%d",&n,&l);
for(int i=;i<=n;++i)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
sum[i]=a[i]+sum[i-];
for(int i=;i<=n;++i)
f[i]=inf;
for(int i=;i<=n;++i)
q[i]=sum[i]+i;
for(int i=;i<=n;++i)
p[i]=sum[i]+i-l-;
for(int i=;i<=n;++i)
{
while(h<t&&count(que[h],que[h+])<=p[i]*1.0)h++;
f[i]=f[que[h]]+(p[i]-q[que[h]])*(p[i]-q[que[h]]);
while(h<t&&count(que[t-],que[t])>=count(que[t],i))t--;
que[++t]=i;
}
printf("%lld",f[n]);
}
[HNOI2008] 玩具装箱 D2 T3 斜率优化DP的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...
- 2018.09.05 bzoj1010: [HNOI2008]玩具装箱toy(斜率优化dp)
传送门 一道经典的斜率优化dp. 推式子ing... 令f[i]表示装前i个玩具的最优代价. 然后用老套路. 我们只考虑把第j+1" role="presentation" ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
- _bzoj1010 [HNOI2008]玩具装箱toy【斜率优化dp】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 裸的斜率优化,第一次写队首维护的时候犯了个智障错误,队首维护就是维护队首,我怎么会那队 ...
- [HNOI2008]玩具装箱toy(斜率优化dp)
前言 这是我写的第一道$dp$斜率优化的题目,$dp$一直都很菜,而且咖啡鸡都说了这是基础的东西,然而看别人对$dp$斜率优化一大堆公式又看不懂就老老实实做几道题目,这个比较实在 描述 给出$n$和$ ...
- bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)
Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i- ...
- BZOJ 1010 [HNOI2008]玩具装箱toy:斜率优化dp
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 有n条线段,长度分别为C[i]. 你需要将所有的线段分成若干组,每组中线段的 ...
- 洛谷3195 [HNOI2008]玩具装箱TOY(斜率优化+dp)
qwq斜率优化好题 第一步还是考虑最朴素的\(dp\) \[dp=dp[j]+(i-j-1+sum[i]-sum[j])^2 \] 设\(f[i]=sum[i]+i\) 那么考虑将上述柿子变成$$dp ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
随机推荐
- Restful API及接口安全
一.简介 REST(Representational State Transfer,具体状态转移),是一种基于HTTP协议.URI(统一资源定位符).JSON和XML这些现有协议与标准的,针对网络应用 ...
- 为Linux环境安装图形化界面
1.更新软件源并升级系统 yum uppdate&&yum install wqy-microhei-fonts 2.安装GNOME+VNC一键包 wget https://gist. ...
- 配置solrcloud
1.1 Zookeeper集群的搭建 1.1.1 前台条件 三个zookeeper实例.Zookeeper也是java开发的所以需要安装jdk. 1.Linux系统 2.Jdk环境. 3.Zo ...
- Codeforces 1296E2. String Coloring (hard version)
这道题和HDU1257一模一样,一开始窝都用贪心直接解,没法理解为什么求一个最长下降序列,直到看了巨巨的题解,先给出一个定理,Dilworth's theorem,离散学不好,补题两行泪,该定理是说, ...
- 小米xiaomi9 google play卡在检查信息
终于在今年淘汰掉用了三年的果6s,换了小米9 ,结果发现科学..上网后,可以正常打开google网页,却无法登陆,gmail也无法使用.一直卡在“正在核对信息”. 检查服务,小米9 全系列自带了谷歌框 ...
- 072、Java面向对象之定义构造方法
01.代码如下: package TIANPAN; class Book { // 定义一个新的类 public Book() { // 构造方法 System.out.println("* ...
- POI 2001 Goldmine 线段树 扫描线
题目链接 http://www.acm.cs.ecnu.edu.cn/problem.php?problemid=1350 http://main.edu.pl/en/archive/oi/8/kop ...
- CSS-lineheight
.test div{width:300px;margin:15px 0;border:1px solid #000;}.test p{margin:0;font-size:30px;}.fixed d ...
- 计算机网络中OSI参考模型
OSI参考模型 应用层 包括所有能产生网络流量的程序 DNS属于这一层 表示层 用来判断传输之前是否进行加密或压缩处理(二进制.ASCII) 比如出现乱码情况,可能就是表示层的问题 会话层 一个浏览器 ...
- Censoring「USACO 2015 Feb」
题目描述 有一个S串和一个T串,长度均小于1,000,000,设当前串为U串,然后从前往后枚举S串一个字符一个字符往U串里添加,若U串后缀为T,则去掉这个后缀继续流程. 输入格式 包含两行,第一行为S ...