cf788B/789D. Weird journey

题意

n个点m条边无重边有自环无向图,问有多少种路径可以经过m-2条边两次,其它两条边1次。边集不同的路径就是不同的。

题解

将所有非自环的边变成两份。然后去掉两条边,看有没有欧拉路。

如果两条边都不是自环,那么只当他们相邻时(共享一个点),剩下的图有两个奇数度的点。有欧拉路。所以第i个点作为共享的点,有\(C(cnt_i,2)\)种路径。

如果其中一个是自环,那么其他m-1条边任意选一个都可以。有loop*(m-1)条,不过每个自环算了两次。所以要减去C(loop,2)。

注意判断一下图是不是联通的,不联通答案是0。

代码

const int N=1001000;
int f[N];
int n,m;
VI e[N];
int find(int x){
return x==f[x]?x:f[x]=find(f[x]);
}
ll loop;
ll ans;
bool o[N];
int main() {
ios::sync_with_stdio(false);//!!!TLE
cin>>n>>m;
rep(i,1,n+1)f[i]=i; int u,v;
rep(i,0,m){
cin>>u>>v;
o[u]=o[v]=1;
if(u==v)++loop;
int fu=find(u),fv=find(v);
if(fu!=fv)f[fu]=fv;
if(u!=v){e[u].pb(v);e[v].pb(u);}
}
rep(i,1,n+1)if(o[i]&&find(i)!=find(u))ans=-1;//o[i]:出现过的点。
if(~ans){
ans=loop*(m-1)-(loop-1)*loop/2;
rep(i,1,n+1)ans+=(ll)(SZ(e[i])-1)*SZ(e[i])/2;
cout<<ans<<endl;
}
else cout<<"0";
return 0;
}

【cf789D】Weird journey(欧拉路、计数)的更多相关文章

  1. Codeforces 789D Weird journey - 欧拉路 - 图论

    Little boy Igor wants to become a traveller. At first, he decided to visit all the cities of his mot ...

  2. Codeforces Round #407 (Div. 2) D. Weird journey(欧拉路)

    D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  3. CodeForces - 788B Weird journey 欧拉路

    题意:给定n个点,m条边,问能否找到多少条符合条件的路径.需要满足的条件:1.经过m-2条边两次,剩下两条边1次  2.任何两条路的终点和起点不能相同. 欧拉路的条件:存在两个或者0个奇度顶点. 思路 ...

  4. Weird journey CodeForces - 788B (路径计数)

    大意:$n$结点$m$条边无向图, 满足 $(1)$经过$m-2$条边$2$次 $(2)$经过其余$2$条边$1$次 的路径为好路径, 求所有好路径数 相当于边加倍后再删除两条边, 求欧拉路条数 首先 ...

  5. CodeForces 788B - Weird journey [ 分类讨论 ] [ 欧拉通路 ]

    题意: 给出无向图. good way : 仅有两条边只经过一次,余下边全经过两次的路 问你共有多少条不同的good way. 两条good way不同仅当它们所经过的边的集合中至少有一条不同 (很关 ...

  6. 洛谷P1341 无序字母对[无向图欧拉路]

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  7. POJ1386Play on Words[有向图欧拉路]

    Play on Words Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11846   Accepted: 4050 De ...

  8. hdu1161 欧拉路

    欧拉路径是指能从一个点出发能够“一笔画”完整张图的路径:(每条边只经过一次而不是点) 在无向图中:如果每个点的度都为偶数 那么这个图是欧拉回路:如果最多有2个奇数点,那么出发点和到达点必定为该2点,那 ...

  9. UVA10054The Necklace (打印欧拉路)

    题目链接 题意:一种由彩色珠子组成的项链.每个珠子的两半由不同的颜色组成.相邻的两个珠子在接触的地方颜色相同.现在有一些零碎的珠子,需要确定他们是否可以复原成完整的项链 分析:之前也没往欧拉路上面想, ...

随机推荐

  1. C. Nastya Is Transposing Matrices

    链接 [https://codeforces.com/contest/1136/problem/C] 题意 给你两个规模一样的矩阵 问是否可以通过不断选取A矩阵的子"方正"转置得到 ...

  2. Python云端系统开发入门 pycharm代码

    html <!DOCTYPE html><html><head> <meta charset="UTF-8"> <title& ...

  3. BOM、DOM

    window对象 所有浏览器都支持window对象,他表示浏览器窗口. 全局变量是window对象的属性.全局函数是window对象的方法. window的常用方法: window.innerHeig ...

  4. 【kindle笔记】之 《明朝那些事儿》-2018-7-1

    [kindle笔记]读书记录-总 最近在读这本书.之前在微信读书里断断续续读过,读到深处还想蹦起来做笔记那种.后来种种原因断了,再没续上. 现在又开始啦.最近还在重八兄造反阶段,还很早呢,有时候晚上玩 ...

  5. JEECG SSO kisso

    kisso: java 基于 Cookie 的 SSO 中间件 kisso https://gitee.com/baomidou/kisso kisso首页.文档和下载 - 基于 Cookie 的 S ...

  6. CLOUD SQL跟踪

    CLOUD会自动在后台执行一些sql语句,所以追踪起来比较麻烦,需要加入一些过滤条件. 比如关键的CLIENTPROCESSID,加入后 ,就能过滤是哪个客户度执行的数据. 过滤数据.

  7. java.io.FileNotFoundException关于使用Intellij Idea时系统找不到指定文件的解决方案

    第一种:Intellij Idea 这个智障编辑器 在用的时候 是你在这个web目录下的空文件夹他是不给你部署的 解决在空文件夹下面随便放个文件夹就行了 第二种:也是最笨的方法,但是有前提条件就是 你 ...

  8. C#中as运算符

    as运算符用于执行引用类型的显式类型转换.如果要转换的类型与指定的类型兼容,转换就会成功进行:如果类型不兼容,as运算符就会返回null值.如下面的代码所示,如果object引用实际上不引用strin ...

  9. 集合之LinkedHashMap(含JDK1.8源码分析)

    一.前言 大多数的情况下,只要不涉及线程安全问题,map都可以使用hashMap,不过hashMap有一个问题,hashMap的迭代顺序不是hashMap的存储顺序,即hashMap中的元素是无序的. ...

  10. Python——FTP上传和下载

    一.FTP对象方法说明 login(user='anonymous',passwd='', acct='') 登录 FTP 服务器,所有参数都是可选的 pwd() 获得当前工作目录 cwd(path) ...