cf1088E Ehab and a component choosing problem (树形dp)
题意(考试时看错了对着样例wa了好久..):从树上选k个连通块,使得权值的平均值最大的基础上,选的块数最多
如果不考虑块数最多的限制,肯定是只选一个权值最大的块是最好的
然后只要看这个权值最大的块有多少个不相交的就可以了
做法就是,在dp的时候,一旦找到了和最大权值相等的块,直接统计答案,然后把这一块的权值改成-inf
#include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
using namespace std;
typedef long long ll;
const int maxn=3e5+; inline char gc(){
return getchar();
static const int maxs=<<;static char buf[maxs],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,maxs,stdin),p1==p2)?EOF:*p1++;
}
inline ll rd(){
ll x=;char c=gc();bool neg=;
while(c<''||c>''){if(c=='-') neg=;c=gc();}
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=gc();
return neg?(~x+):x;
} int N,a[maxn];
int eg[maxn*][],egh[maxn],ect;
ll f[maxn],answ=-1e15,ansk; inline void adeg(int a,int b){
eg[++ect][]=b,eg[ect][]=egh[a],egh[a]=ect;
} inline void dfs1(int x,int fa){
f[x]=a[x];
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(b==fa) continue;
dfs1(b,x);
if(f[b]>) f[x]+=f[b];
}
answ=max(answ,f[x]);
}
inline void dfs2(int x,int fa){
f[x]=a[x];
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(b==fa) continue;
dfs2(b,x);
if(f[b]>) f[x]+=f[b];
}
if(f[x]==answ) ansk++,f[x]=-1e15;
} int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd();
for(i=;i<=N;i++) a[i]=rd();
for(i=;i<N;i++){
int a=rd(),b=rd();
adeg(a,b);adeg(b,a);
}
dfs1(,);dfs2(,);
answ*=ansk;
printf("%I64d %I64d\n",answ,ansk);
return ;
}
cf1088E Ehab and a component choosing problem (树形dp)的更多相关文章
- Codeforces 1088E Ehab and a component choosing problem
Ehab and a component choosing problem 如果有多个连接件那么这几个连接件一定是一样大的, 所以我们先找到值最大的连通块这个肯定是分数的答案. dp[ i ]表示对于 ...
- Codeforces Round #525 (Div. 2)E. Ehab and a component choosing problem
E. Ehab and a component choosing problem 题目链接:https://codeforces.com/contest/1088/problem/E 题意: 给出一个 ...
- 【数学/贪心/DP】【CF1088E】 Ehab and a component choosing problem
Description 给定一棵 \(n\) 个节点的树,点有点权 \(a_u\),可能为负.现在请你在树上找出 \(k~(1~\leq~k~\leq~n)\) 个不相交集合,使得每个集合中的每对点都 ...
- Codeforces Round #525 (Div. 2) E. Ehab and a component choosing problem 数学
题意:给出树 求最大的sigma(a)/k k是选取的联通快个数 联通快不相交 思路: 这题和1个序列求最大的连续a 的平均值 这里先要满足最大平均值 而首先要满足最大 也就是一个数的时候可 ...
- cfE. Ehab and a component choosing problem(贪心)
题意 题目链接 给出一棵树,每个节点有权值,选出\(k\)个联通块,最大化 \[\frac{\sum_{i \in S} a_i}{k}\] Sol 结论:选出的\(k\)个联通块的大小是一样的且都等 ...
- Codeforces Round #525 E - Ehab and a component choosing problem
题目大意: 在一棵树中 选出k个联通块 使得 这k个联通块的点权总和 / k 最大 并且这k个联通块不相互覆盖(即一个点只能属于一个联通块) 如果有多种方案,找到k最大的那种 给定n 有n个点 给定n ...
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca
Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...
- HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...
随机推荐
- java 8 jvm 内存配置
jdk8内存参数解析与修改(新的参数) - LikeTech - CSDN博客https://blog.csdn.net/lk7688535/article/details/51767333 Java ...
- 关于PHP批量图片格式转换的问题--本文转成webp, 其他过程格式一样
最近要把项目中的图片全部生成webp格式, 过程整理一下, (直接存在本地,或者图片链接存在数据库都可以看看) 首先,肯定是批量处理, 一个php处理不了这么多, 会爆内存的, 个人建议用aja ...
- PHP中stdClass的意义
在WordPress中很多地方使用stdClass来定义一个对象(而通常是用数组的方式),然后使用get_object_vars来把定义的对象『转换』成数组. 如下代码所示: 1 2 3 4 5 ...
- PS中如何把图片颜色加到字体上去
1.在PS中的图层中,将图片置于文字层的上方,同时按ctrl+alt+g键,这样就将文字范围以外的图像给剪切掉了.见附图下方的效果. 2.最终效果如下图: 参见:https://zhidao.baid ...
- spring-01
Spring概述 概述 Spring是一个开源框架 为企业级开发而生 是一个IOC[DI]和AOP容器框架 有许多优良特性 非侵入式:基于Spring开发的应用中的对象可以不依赖Spring的API. ...
- jenkins结合svn检测版本变化执行shell脚本实现项目部署
工具: centos 7 jenkins-2.138.2-1.1.noarch.rpm,2018年10月10号最新版(简单rpm包安装见https://www.cnblogs.com/dannylin ...
- 微服务架构中APIGateway原理
背景 我们知道在微服务架构风格中,一个大应用被拆分成为了多个小的服务系统提供出来,这些小的系统他们可以自成体系,也就是说这些小系统可以拥有自己的数据库,框架甚至语言等,这些小系统通常以提供 Rest ...
- python设计模式第九天【策略模式】
1. 定义 对一系列算法进行封装,为所有算法定义一个抽象的算法接口,可以平滑的进行算法切换 2. 策略模式的UML图 3.代码实现 #!/usr/bin/env python #! _*_ codin ...
- 老男孩python学习自修第二十一天【socket】
1. 使用python编写一个静态的web服务器,能够处理静态页面的http请求 原理: a. 使用socket进行服务端和浏览器之间的通信 b. 使用多线程处理多个客户端浏览器的请求 c. 解析用户 ...
- Delphi窗体之间互相调用的简单问题
问题是这样的,我的程序主窗口Form1上面有一个数据连接(ADOCONNECTION1)和ADOQUERY,然后还有一些数据感知组件用于浏览用的,我打算点击From1中的一个“修改数据”按钮,就弹出F ...