题意(考试时看错了对着样例wa了好久..):从树上选k个连通块,使得权值的平均值最大的基础上,选的块数最多

如果不考虑块数最多的限制,肯定是只选一个权值最大的块是最好的

然后只要看这个权值最大的块有多少个不相交的就可以了

做法就是,在dp的时候,一旦找到了和最大权值相等的块,直接统计答案,然后把这一块的权值改成-inf

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
using namespace std;
typedef long long ll;
const int maxn=3e5+; inline char gc(){
return getchar();
static const int maxs=<<;static char buf[maxs],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,maxs,stdin),p1==p2)?EOF:*p1++;
}
inline ll rd(){
ll x=;char c=gc();bool neg=;
while(c<''||c>''){if(c=='-') neg=;c=gc();}
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=gc();
return neg?(~x+):x;
} int N,a[maxn];
int eg[maxn*][],egh[maxn],ect;
ll f[maxn],answ=-1e15,ansk; inline void adeg(int a,int b){
eg[++ect][]=b,eg[ect][]=egh[a],egh[a]=ect;
} inline void dfs1(int x,int fa){
f[x]=a[x];
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(b==fa) continue;
dfs1(b,x);
if(f[b]>) f[x]+=f[b];
}
answ=max(answ,f[x]);
}
inline void dfs2(int x,int fa){
f[x]=a[x];
for(int i=egh[x];i;i=eg[i][]){
int b=eg[i][];if(b==fa) continue;
dfs2(b,x);
if(f[b]>) f[x]+=f[b];
}
if(f[x]==answ) ansk++,f[x]=-1e15;
} int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd();
for(i=;i<=N;i++) a[i]=rd();
for(i=;i<N;i++){
int a=rd(),b=rd();
adeg(a,b);adeg(b,a);
}
dfs1(,);dfs2(,);
answ*=ansk;
printf("%I64d %I64d\n",answ,ansk);
return ;
}

cf1088E Ehab and a component choosing problem (树形dp)的更多相关文章

  1. Codeforces 1088E Ehab and a component choosing problem

    Ehab and a component choosing problem 如果有多个连接件那么这几个连接件一定是一样大的, 所以我们先找到值最大的连通块这个肯定是分数的答案. dp[ i ]表示对于 ...

  2. Codeforces Round #525 (Div. 2)E. Ehab and a component choosing problem

    E. Ehab and a component choosing problem 题目链接:https://codeforces.com/contest/1088/problem/E 题意: 给出一个 ...

  3. 【数学/贪心/DP】【CF1088E】 Ehab and a component choosing problem

    Description 给定一棵 \(n\) 个节点的树,点有点权 \(a_u\),可能为负.现在请你在树上找出 \(k~(1~\leq~k~\leq~n)\) 个不相交集合,使得每个集合中的每对点都 ...

  4. Codeforces Round #525 (Div. 2) E. Ehab and a component choosing problem 数学

    题意:给出树 求最大的sigma(a)/k k是选取的联通快个数   联通快不相交 思路: 这题和1个序列求最大的连续a 的平均值  这里先要满足最大平均值  而首先要满足最大  也就是一个数的时候可 ...

  5. cfE. Ehab and a component choosing problem(贪心)

    题意 题目链接 给出一棵树,每个节点有权值,选出\(k\)个联通块,最大化 \[\frac{\sum_{i \in S} a_i}{k}\] Sol 结论:选出的\(k\)个联通块的大小是一样的且都等 ...

  6. Codeforces Round #525 E - Ehab and a component choosing problem

    题目大意: 在一棵树中 选出k个联通块 使得 这k个联通块的点权总和 / k 最大 并且这k个联通块不相互覆盖(即一个点只能属于一个联通块) 如果有多种方案,找到k最大的那种 给定n 有n个点 给定n ...

  7. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  8. HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca

    Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...

  9. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

随机推荐

  1. Linux基础命令和NAT技术

    yum    yellowdog updater,modified是一种用python写的基于rpm的管理工具 用于解决rpm包的依赖性 要安装编译工具 yum install gcc 库函数:静态库 ...

  2. ORACLE 当字段中有数据如何修改字段类型

    创建视图的时候,因为表太多,里面一些字段类型不一样,PL/SQL报错,为‘表达式必须具有对应表达式相同的数据类型’,发现后,一个字段的类型为CLOB和VARCHAR2(4000)两种,将CLOB进行修 ...

  3. Chrome 浏览器的简单设置 无痕模式 暗黑模式 自定义用户目录

    1. Chrome73 新增加了暗黑模式 可以通过修改快捷方式的方式来默认开启方法如下 1.1 关闭浏览器 2.2 鼠标焦点定位到任务栏 Chrome 图标处, 并且按住shift 按键 执行右键操作 ...

  4. Eclipse的一个“bug”

    标题之所以打上双引号,是因为暂时不知道怎么确定. 一个 .java文件里有两个类:public Bath:Soap.它们都有一个main()方法. 从命令行单独访问任意一个类的main()方法,都没毛 ...

  5. Linux基础学习笔记4-文本处理

    本章内容 抽取文本的工具 文件内容:less和cat 文件截取:head和tail 按列抽取:cut 按关键字抽取:grep 文件查看 文件查看命令:cat,tac,rev cat [OPTION] ...

  6. prometheus和metrucs-server (k8s监控)

    资源指标:metrucs-server 自定义指标:prometheus, k8s-prometheus-adapter(转换prometheus数据的格式) 新一代架构: 核心指标流水线:由kube ...

  7. LoadRunner Vuser测试脚本添加前置条件举例

    调用接口前需要先获取登陆token,放入消息头中. /* * LoadRunner Java script. (Build: 3020) * * Script Description: 接口性能测试脚 ...

  8. 二、kubernetes

    一.kubernetes(简称k8s) 集群示意图 Kubernetes工作模式server-client,Kubenetes Master提供集中化管理Minions.部署1台Kubernetes ...

  9. luogu4187

    P4187 [USACO18JAN]Stamp Painting 样例 input3 2 2output6 input6 10 5output190 sol:首先可以发现,对于合法的序列,只要有一串至 ...

  10. 前端es6基础语法

    1.let.const.var var是声明全局的变量,作用域是全局,const是声明全局的常量,不能修改,而let是块级变量只在当前声明的作用域中生效: { var a = 10; let b = ...