Multi-Fiber Networks for Video Recognition (MFNet)

Motivation:减少时空网络的计算量,保持视频分类精度的基础上,使速度尽可能接近对应网络的2D版本。
为此提出 Multi-Fiber 网络,将复杂网络拆分成轻量网络的集成,利用 fibers 间的信息流引入多路器模块。
Result:比I3D和R(2+1)D分别少9倍,13倍的计算量,但精度更高,UCF-101, HMDB-51 and Kinetics 上的 state of the art。
2D网络需要10s GFLOP来处理单帧,3D网络需要100s GFLOP处理一个clip,作者认为3D网络有能力进一步提高因为融入了时空信息。
3D卷积开销很大,与Du tran和Xie Saining提出的R(2+1)D和S3D用1x3x3, 3x1x1时空分解卷积替代3x3x3这种做法不同,因为相对其2D版本仍有数量级的复杂度,以上两种方法很难在实际应用,受low-power MobileNet-v2网络的启发以及通过分组卷积稀疏化做法的启发,作者提出稀疏连接结构,并在2D CNN图片分类上实验确认结构的有效性,后扩展为时空CNN。

(a) resnet block (b) resNeXt block (c) fibers(author) (d) 加入multiplexer 传递不同fiber间信息 (e) 两个线性层降维和升维
resNeXt的中间模块对通道分组后分别用3x3卷积,bottleneck结构+分组卷积会很大程度降低计算量。d中可以看出去除了对整个通道的1x1卷积(全连接),引入了multiplexer层弥补信息损失,将主干feature的channel全部分组后,平行的残差计算,其中每一个分支称为(fiber)
resnet两个conv的简化连接数计算,其中Min表示输入channel,Mmid,Mout等同:

如果这个运算单元channel的维数增加k倍,那么运算量将增加K的平方倍。反之,减小也是2次的减小。

对channel切分为N个并行且独立的模块后,总的简化连接的数量,可见是直接resnet模块的1/N倍,实验中N=16。
Multi-Fiber Networks
2D图片域的验证:
1. 基于ResNet-18和MobileNet-v2的baseline,将其中的模块替换为多纤维模块
2. 重新设计了一个2D MF-Net

可以看出,Multi-Fiber结构在ResNet-18和MobileNet-v2上可以在少量降低计算量和参数量的情况下,精度上有一定提高,表明模块的有效性。而MF-Net也在参数和计算量较低的情况下达到了不错的效果。最后一栏实验则表明了Multiplexer模块大概会占据30%的计算量,但对效果的提升也是比较明显的。
3D版本

为了降低计算量,两层卷积只有一层进行了时序上的卷积
UCF101和HMDB51上的结果

Kinetics分类结果分析
在400类中有190类准确率超过80%,349类超过50%。只有17类低于30%效果糟糕。
特别的是那些准确率高的类,其特点:
1. 相对别的类有特殊的物体/背景
2. 跨越较长时间所发生的特殊动作
识别不好的类,其特点:
通常没有可区分的物体或在长视频中目标动作持续很短
部分参考自:
知乎林天威
Multi-Fiber Networks for Video Recognition (MFNet)的更多相关文章
- 【ML】Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for ...
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...
- 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...
- PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning --- 论文笔记
PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning ICLR 20 ...
- SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...
- Multi-Agent Reinforcement Learning Based Frame Sampling for Effective Untrimmed Video Recognition
Multi-Agent Reinforcement Learning Based Frame Sampling for Effective Untrimmed Video Recognition IC ...
- 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...
- Local Relation Networks for Image Recognition
目录 概 主要内容 Hu H., Zhang Z., Xie Z., Lin S. Local relation networks for image recognition. In Internat ...
- 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)
论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...
随机推荐
- Error occurred in deployment step 'Retract Solution': xxx 无法反序列化,因为它没有公共的默认构造函数
一.环境:SharePoint 2016 + Visual Studio 2015, 二.错误描述: 错误1:帮朋友写个计时器Demo,部署位置GAC,来回部署几次后,vs2015报错: 严重性 代码 ...
- luci 中require函数包含的路径
在 lua 脚本中常用的包含某个文件就是 require 函数. 例如: #!/usr/bin/lua // 表明使用的是lua脚本,像shell脚本一样 lo ...
- $Django 路飞之课程下的分类,用户登陆成功前端存cookie,
一 课程分类显示 宗旨:总的再次过滤 二 Cookie # export default new Vuex.Store({ state: { name:'', token:'', }, mutatio ...
- ebs 12.1.1升级到12.1.3
升级过程参考 Oracle电子商务套件版本12.1.3自述文件 (文档 ID 1534411.1) 应用启动到维护模式 adadmin 打以下patch 9239089 9239090 92390 ...
- vue.js插槽
具体讲解的url https://github.com/cunzaizhuyi/vue-slot-demo //例子 用jsfiddle.net去运行就好 <!DOCTYPE html> ...
- 搭建activemq服务
文章链接:https://www.cnblogs.com/xiaxinggege/p/5900319.html ubuntu下安装JDK并搭建activeMQ 1.安装JDK,网上有人说activ ...
- 深入理解ajax
http://www.imooc.com/code/13468 基础练习 http://www.imooc.com/video/5644 !ajax! 常用 for ...
- Confluence 6 修改 Home 目录的位置
当 Confluence 第一次启动的时候,Confluence 将会读取 confluence-init.properties 文件并从这个文件中确定如何去查找 Home 目录. 希望修改 home ...
- Spark Streaming通过JDBC操作数据库
本文记录了学习使用Spark Streaming通过JDBC操作数据库的过程,源数据从Kafka中读取. Kafka从0.10版本提供了一种新的消费者API,和0.8不同,因此Spark Stream ...
- 添加按钮 table增加一行 删减按钮 table去掉一行
需求描述:做的一个AA新增功能,同时可以为这个即将新增的AA添加内容,而且AA的内容默认展示一行列表,点击添加按钮后出现下一行列表 解决思路:页面首先展示一个表头和列表的一行,作为默认展示的一行列表, ...