/*
给定n个数ai,要求欧拉函数值大于ai的最小的数bi
求sum{bi}
*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 1000005
int n,a[maxn]; int phi[maxn],m,v[maxn],prime[maxn];
void init(int n){
memset(v,,sizeof v);
m=;
for(int i=;i<n;i++){
if(v[i]==){//i是质数
v[i]=i,prime[++m]=i;
phi[i]=i-;
}
for(int j=;j<=m;j++){
if(prime[j]>v[i] || prime[j]*i>n)break;
v[i*prime[j]]=prime[j];//筛素数
phi[i*prime[j]]=phi[i]*(i%prime[j]?prime[j]-:
prime[j]);
}
}
}
/*int phi[maxn];
void init(int n){//用era筛的思路O(nlogn)复杂度
phi[1]=1;
for(int i=2;i<=n;i++)phi[i]=i;
for(int i=2;i<=n;i++)
if(phi[i]==i)//i是质数
for(int j=1;i*j<=n;j++)
phi[i*j]=phi[i*j]/i*(i-1);
}*/
int main(){
int t,tt;
init(maxn);
cin>>t;
for(tt=;tt<=t;tt++){
cin>>n;
for(int i=;i<=n;i++)cin>>a[i];
sort(a+,a++n); int j=;
long long ans=;
for(int i=;i<maxn;i++){
while(phi[i]>=a[j] && j<=n)
ans+=i,j++;
}
printf("Case %d: %lld Xukha\n",tt,ans);
}
}

light1370 欧拉函数打表的更多相关文章

  1. A - Bi-shoe and Phi-shoe (欧拉函数打表)

    Description Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a ver ...

  2. hdu 2824 The Euler function 欧拉函数打表

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  4. POJ 2478 欧拉函数打表的运用

    http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很 ...

  5. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  6. LightOJ - 1370 Bi-shoe and Phi-shoe (欧拉函数打表)

    题意:给N个数,求对每个数ai都满足最小的phi[x]>=ai的x之和. 分析:先预处理出每个数的欧拉函数值phi[x].对于每个数ai对应的最小x值,既可以二分逼近求出,也可以预处理打表求. ...

  7. 杭电多校第十场 hdu6434 Count 欧拉函数打表 快速打表模板

    Problem I. Count Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Other ...

  8. AcWing 201. 可见的点 (欧拉函数打表)打卡

    在一个平面直角坐标系的第一象限内,如果一个点(x,y)与原点(0,0)的连线中没有通过其他任何点,则称该点在原点处是可见的. 例如,点(4,2)就是不可见的,因为它与原点的连线会通过点(2,1). 部 ...

  9. HDU 2824 简单欧拉函数

    1.HDU 2824   The Euler function 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824 3.总结:欧拉函数 题意:求(a ...

随机推荐

  1. async get_event_loop

    以下论述转载自https://segmentfault.com/q/1010000007863971 答主论述清晰,很不错,可参考他的其他答案 首先,event loop 就是一个普通 Python ...

  2. Tip:JSP标签也称之为Jsp Action(JSP动作)元素

    JSP标签也称之为Jsp Action(JSP动作)元素,它用于在Jsp页面中提供业务逻辑功能,避免在JSP页面中直接编写java代码,造成jsp页面难以维护. ================ &l ...

  3. Servlet 线程安全

    普通类的静态属性,当被多个线程访问时,就有线程安全问题: Servlet 也一样 当多个客户端并发访问同一个Servlet时,web服务器会为每一个客户端的访问请求创建一个线程,并在这个线程上调用Se ...

  4. 集合-LinkedList

    List linkedlist = new LinkedList<>(); LinkedList 底层数据结构是链表. 1. LinkedList 除了实现了List接口外,还实现了双向链 ...

  5. Mysql多实例安装笔记

    参考: 系统:KaliLinux (x86_64) 软件下载 1.下载地址: 2.选择5.6版本 安装 1.准备文件和目录 tar -zxvf mysql-5.6.40-linux-glibc2.12 ...

  6. C++ Template 编程,泛型编程练习

    #include <iostream> #include <string> #include <deque> #include <stdexcept> ...

  7. Windows PowerShell 入門(8)-関数編3

    この連載では.Microsoftが提供している新しいシェル.Windows PowerShellの使い方を解説します.今回は.フィルタ.スクリプトブロック.変数のスコープについて取り上げます. はじめ ...

  8. Flash芯片你都认识吗?

    [导读]Flash存储器,简称Flash,它结合了ROM和RAM的长处,不仅具备电子可擦除可编程的性能,还不会因断电而丢失数据,具有快速读取数据的特点;在现在琳琅满目的电子市场上,Flash总类可谓繁 ...

  9. CodeForces 937D 936B Sleepy Game 有向图判环,拆点,DFS

    题意: 一种游戏,2个人轮流控制棋子在一块有向图上移动,每次移动一条边,不能移动的人为输,无限循环则为平局,棋子初始位置为$S$ 现在有一个人可以同时控制两个玩家,问是否能使得第一个人必胜,并输出一个 ...

  10. jqueryui组件progressbar进度条和日期组件datepickers的简单使用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...