题意 给定一串数字 相同的连续的数字可以同时 转换成一个相同数字 问最小几次可以全部转换成一个相同的数字

法1:区间dp  dp[l][r][0/1]  0表示l r区间转化成和最左边相同需要多少次 1表示转化成和最右边相同 区间dp即可

 #include<bits/stdc++.h>
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;i++)
#define MS(arr,arr_value) memset(arr,arr_value,sizeof(arr))
#define F first
#define S second
#define pii pair<int ,int >
#define mkp make_pair
#define pb push_back
using namespace std;
typedef long long ll;
const int maxn=5e3+;
int c[maxn],a[maxn],b[maxn];
int dp[maxn][maxn][];
int main(){
int n;
MS(dp,0x3f3f3f3f);
scanf("%d",&n);
FOR(i,,n)scanf("%d",&c[i]);
int cnt=;
int p=;
while(p<=n){
if(c[p]!=c[p-]||p==)a[++cnt]=c[p];
p++;
}
for(int i=;i<=cnt;i++){
dp[i][i][]=dp[i][i][]=;
}
for(int len=;len<=cnt;len++){
for(int l=,r=len+l;r<=cnt;r++,l++){
dp[l][r][]=min(dp[l][r][],dp[l+][r][]+); dp[l][r][]=min(dp[l][r][],dp[l+][r][]+!(a[r]==a[l])); dp[l][r][]=min(dp[l][r][],dp[l][r-][]+); dp[l][r][]=min(dp[l][r][],dp[l][r-][]+!(a[l]==a[r]));
}
}
cout<<min(dp[][cnt][],dp[][cnt][])<<endl;
return ;
}

法2:LCS   从题目可以看出 如果转换成n个互相不连续的数字之后,如果所有数字都不相同则需要转换n-1次才能转换成一种答案

如果存在 例如1 2 3 4 2 5   有区间[2,5] 这时如果先转化2 5 之间的数字 即可少转化一次 那么问题就转换成 求最大不相交的这种区间有多少个(相交不行,因为相交 中间夹的那个点就被更改了)

而求最大相交的区间有多少个 就是把原序列翻转后的序列和原序列求lcs 因为lcs配对的过程  在原序列中的i  和翻转序列的j 就相当于 在原序列左右两边配对 所以不会相交 而因为是翻转的序列 所以会求两遍

所以要/2 并且有一个区间的左右是重合的也就退化成了一个点,不能算 (这里在除以2的时候已经被消气了)减1 是因为 没有区间的时候是n-1的,每多一个区间都可以-1 这样答案就是总共的点数n-1-floor(lcs(s)/2);

 #include<bits/stdc++.h>
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;i++)
#define MS(arr,arr_value) memset(arr,arr_value,sizeof(arr))
#define F first
#define S second
#define pii pair<int ,int >
#define mkp make_pair
#define pb push_back
using namespace std;
typedef long long ll;
const int maxn=5e3+;
int c[maxn],a[maxn],b[maxn];
int dp[maxn][maxn];
int main(){
int n;
scanf("%d",&n);
FOR(i,,n)scanf("%d",&c[i]);
int cnt=;
int p=;
while(p<=n){
if(c[p]!=c[p-]||p==)a[++cnt]=c[p];
p++;
}
memcpy(b,a,sizeof(a));
reverse(b+,b+cnt+);
// for(int i=1;i<=cnt;i++)cout<<b[i]<<" ";
// puts("");
for(int i=;i<=cnt;i++){
for(int j=;j<=cnt;j++)
{
if(a[i]==b[j]){
dp[i][j]=dp[i-][j-]+;
}
else dp[i][j]=max(dp[i-][j],dp[i][j-]);
}
}
printf("%d\n",cnt--dp[cnt][cnt]/);
return ;
}

两种方法参考:https://www.cnblogs.com/pkgunboat/p/10361375.html

区间dp 参考:https://blog.csdn.net/moon_sky1999/article/details/87171499

D. Flood Fill 区间DP 或lcs匹配的更多相关文章

  1. Codeforces 1114D Flood Fill (区间DP or 最长公共子序列)

    题意:给你n个颜色块,颜色相同并且相邻的颜色块是互相连通的(连通块).你可以改变其中的某个颜色块的颜色,不过每次改变会把它所在的连通块的颜色也改变,问最少需要多少次操作,使得n个颜色块的颜色相同. 例 ...

  2. codeforces1114D. Flood Fill(区间Dp)

    传送门: 解题思路: 区间Dp,发现某一个区间修改后区间颜色一定为左边或右边的颜色. 那么只需要设方程$f_(l,r,0/1)$表示区间$[l,r]$染成左/右颜色的最小代价 转移就是枚举左右颜色就好 ...

  3. CodeForces - 1114D-Flood Fill (区间dp)

    You are given a line of nn colored squares in a row, numbered from 11 to nn from left to right. The  ...

  4. POJ2955--Brackets 区间DP入门 括号匹配

    题意很简单,就是求给出串中最大的括号匹配数目.基础题,格式基本为简单区间dp模板. #include<iostream> #include<string.h> using na ...

  5. CF1114D Flood Fill(DP)

    题目链接:CF原网 题目大意:$n$ 个方块排成一排,第 $i$ 个颜色为 $c_i$.定义一个颜色联通块 $[l,r]$ 当且仅当 $l$ 和 $r$ 之间(包括 $l,r$)所有方块的颜色相同.现 ...

  6. Codeforces1114 D. Flood Fill (DP)(整个区间染成同色)

    题意:连续的几个颜色相同的格子称为一个连通块.选一个点为起点,每个操作是把所在连通块变一个颜色,求把整个区间染成同色需要的最少操作数.(注意,每次只能改变所在连通块的颜色,不能任选连通块,除了最开始时 ...

  7. POJ 2955 Brackets 区间DP 最大括号匹配

    http://blog.csdn.net/libin56842/article/details/9673239 http://www.cnblogs.com/ACMan/archive/2012/08 ...

  8. Codeforces Round #538 (Div. 2) D. Flood Fill 【区间dp || LPS (最长回文序列)】

    任意门:http://codeforces.com/contest/1114/problem/D D. Flood Fill time limit per test 2 seconds memory ...

  9. poj2955括号匹配 区间DP

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5424   Accepted: 2909 Descript ...

随机推荐

  1. 编剧小记 — Contour

    前言 Contour 是一款比较优秀的编剧辅助软件,按理说这篇文章应该归类到mac小记中,但其操作非常简单,基本上以写作提示为主.只怪所有提示都是英语,而且很多,每次使用打开 Contour 个别单词 ...

  2. ACM/ICPC 2018亚洲区预选赛北京赛站网络赛D-80 Days--------树状数组

    题意就是说1-N个城市为一个环,最开始你手里有C块钱,问从1->N这些城市中,选择任意一个,然后按照顺序绕环一圈,进入每个城市会有a[i]元钱,出来每个城市会有b[i]个城市,问是否能保证经过每 ...

  3. 开发工程中遇到的BUG

    Xcode7自带Git创建的项目"Couldn’t communicate with a helper application" git xcode7 zhunjiee 2015年 ...

  4. Django 组件之 ----- content-type

    Django 组件之 content-type的使用 一个表和多个表进行关联,但具体随着业务的加深,表不断的增加,关联的数量不断的增加,怎么通过一开始通过表的设计后,不在后期在修改表,彻底的解决这个问 ...

  5. ansible jenkins war

    Ansible is Simple IT Automationhttps://www.ansible.com/ Ansible中文权威指南- 国内最专业的Ansible中文官方学习手册http://a ...

  6. Composer安装与使用

    Composer是PHP中用来管理依赖(dependency)关系的工具.你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer会帮你安装这些依赖的库文件. Windows ...

  7. PV、TPS、QPS计算公式(转)

    英文解释: PV=page viewTPS=transactions per secondQPS=queries per secondRPS=requests per second RPS=并发数/平 ...

  8. java 工厂模式 转载

    下面介绍三种设计模式,简单工厂模式,工厂方法模式,抽象工厂模式 思考如下场景: 有一天,林同学准备去买笔记本,他到商城发现有两款电脑他特别喜欢, 一款是 Macbook Pro, 另一款是 Surfa ...

  9. java随笔3 spring 的注入执行逻辑顺序

  10. CRM系统数据授权

    1.新建角色,华东二区 2.业务对象中找到客户管理 3.在数据范围中新建数据规则,并进行设置 4.点击授权后,生效. 另:数据权限设置