GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17385    Accepted Submission(s): 6699

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
 
就是求 [1, b / k]  和 [1, d / k] 互质数的对数
 先用欧拉函数求出 相同区间的互质的对数 多出来的 用容斥去求
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int ans;
LL tot[maxn + ];
int prime[maxn+], phi[maxn+];
bool vis[maxn+];
void getphi()
{
ans = ;
phi[] = ;
for(int i=; i<=maxn; i++)
{
if(!vis[i])
{
prime[++ans] = i;
phi[i] = i - ;
}
for(int j=; j<=ans; j++)
{
if(i * prime[j] > maxn) break;
vis[i * prime[j]] = ;
if(i % prime[j] == )
{ phi[i * prime[j]] = phi[i] * prime[j]; break;
}
else
phi[i * prime[j]] = phi[i] * (prime[j] - );
}
}
} int get_cnt(int n, int m)
{
int ans = ;
for(int i = ; i * i <= n; i++)
{
if(n % i) continue;
while(n % i == ) n /= i;
prime[ans++] = i;
}
if(n != ) prime[ans++] = n;
int res = ;
for(int i = ; i < ( << ans); i++)
{
int tmp = , cnt2 = ;
for(int j = ; j < ans; j++)
{
if(((i >> j) & ) == ) continue;
tmp *= prime[j];
cnt2++;
}
if(cnt2 & ) res += m / tmp;
else res -= m / tmp;
}
return m - res;
} int main()
{
getphi();
int a, b, c, d, k;
for(int i = ; i < maxn; i++)
{
tot[i] = tot[i - ] + phi[i]; }
int T, kase = ;
cin >> T;
while(T--)
{
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
if(k == )
{
printf("Case %d: 0\n", ++kase);
continue;
}
int n = b / k, m = d / k;
LL sum = tot[n > m ? m : n];
// cout << sum << endl;
if(m > n) swap(n, m);
for(int i =m + ; i <= n; i++)
{
sum += get_cnt(i, m);
}
printf("Case %d: %lld\n", ++kase, sum);
} return ;
}

GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17385    Accepted Submission(s): 6699

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source

GCD HDU - 1695 (欧拉 + 容斥)的更多相关文章

  1. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  2. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  3. hdu 1695 欧拉函数+容斥原理

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  4. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  5. GCD nyoj 1007 (欧拉函数+欧几里得)

    GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor ...

  6. HDU 3970 Harmonious Set 容斥欧拉函数

    pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n  求连续整数[0,n), 中随意选一些数使得选出的 ...

  7. HDU 1695 GCD (容斥原理+欧拉函数)

    题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...

  8. HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...

  9. HDU 4135 Co-prime(容斥:二进制解法)题解

    题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也 ...

随机推荐

  1. semantic-ui 图片

    1.基础样式 方式一:因为图片是使用img标签,所以直接将class加载img标签中即可.不过要注意的是,class中要指定是ui image. 方式二:使用一个span或者div将img标签包裹,然 ...

  2. Django 组件之 ----- content-type

    Django 组件之 content-type的使用 一个表和多个表进行关联,但具体随着业务的加深,表不断的增加,关联的数量不断的增加,怎么通过一开始通过表的设计后,不在后期在修改表,彻底的解决这个问 ...

  3. 同一个机器 安装多个版本Chrome浏览器的方法

    1. Chrome 现在安装直接没有任何提示 就直接安装了 而且自动式 高版本覆盖低版本安装 不给你任何选择版本的机会. 2. 但是chrome 的安装是基于用户的 所以 同一个机器 使用不同的用户 ...

  4. linux重装后配一些库

    #先要设置软件源 sudo apt-get update sudo apt-get upgrade #播放器 sudo apt-get install smplayer qt sudo apt-get ...

  5. 将form数据转换成json对象自定义插件实现思路

  6. Idea批量修改变量名

    Idea批量修改变量名.在变量名上进行rename操作,所有的同名变量都会自动更改. 快捷键:ALT+SHIFT+R

  7. 连接mysql 出现 1005 error(150) , error(121)的错误

    1.显示不能创建表 出现150错误 将检查是因为 我的user 表示拷贝过来的所以它设置的编码格式是utf-8 而我又新创建的表没有添加编码格式,所以它认为这两个关联的表之间的编码格式不匹配. 2.出 ...

  8. TextView不用ScrollViewe也可以滚动的方法

    转自:http://www.jb51.net/article/43377.htm android TextView不用ScrollViewe也可以滚动的方法. TextView textview = ...

  9. GlusterFS 安装配置

    1.磁盘格式化 mkfs.xfs -i size=512 /dev/vdb1 mkdir -p /data/brick1 cat > /etc/fstab <<EOF /dev/vd ...

  10. WPF 如何创建自己的WPF自定义控件库

    在我们平时的项目中,我们经常需要一套自己的自定义控件库,这个特别是在Prism这种框架下面进行开发的时候,每个人都使用一套统一的控件,这样才不会每个人由于界面不统一而造成的整个软件系统千差万别,所以我 ...