GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17385    Accepted Submission(s): 6699

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
 
就是求 [1, b / k]  和 [1, d / k] 互质数的对数
 先用欧拉函数求出 相同区间的互质的对数 多出来的 用容斥去求
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int ans;
LL tot[maxn + ];
int prime[maxn+], phi[maxn+];
bool vis[maxn+];
void getphi()
{
ans = ;
phi[] = ;
for(int i=; i<=maxn; i++)
{
if(!vis[i])
{
prime[++ans] = i;
phi[i] = i - ;
}
for(int j=; j<=ans; j++)
{
if(i * prime[j] > maxn) break;
vis[i * prime[j]] = ;
if(i % prime[j] == )
{ phi[i * prime[j]] = phi[i] * prime[j]; break;
}
else
phi[i * prime[j]] = phi[i] * (prime[j] - );
}
}
} int get_cnt(int n, int m)
{
int ans = ;
for(int i = ; i * i <= n; i++)
{
if(n % i) continue;
while(n % i == ) n /= i;
prime[ans++] = i;
}
if(n != ) prime[ans++] = n;
int res = ;
for(int i = ; i < ( << ans); i++)
{
int tmp = , cnt2 = ;
for(int j = ; j < ans; j++)
{
if(((i >> j) & ) == ) continue;
tmp *= prime[j];
cnt2++;
}
if(cnt2 & ) res += m / tmp;
else res -= m / tmp;
}
return m - res;
} int main()
{
getphi();
int a, b, c, d, k;
for(int i = ; i < maxn; i++)
{
tot[i] = tot[i - ] + phi[i]; }
int T, kase = ;
cin >> T;
while(T--)
{
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
if(k == )
{
printf("Case %d: 0\n", ++kase);
continue;
}
int n = b / k, m = d / k;
LL sum = tot[n > m ? m : n];
// cout << sum << endl;
if(m > n) swap(n, m);
for(int i =m + ; i <= n; i++)
{
sum += get_cnt(i, m);
}
printf("Case %d: %lld\n", ++kase, sum);
} return ;
}

GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17385    Accepted Submission(s): 6699

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source

GCD HDU - 1695 (欧拉 + 容斥)的更多相关文章

  1. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  2. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  3. hdu 1695 欧拉函数+容斥原理

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  4. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  5. GCD nyoj 1007 (欧拉函数+欧几里得)

    GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor ...

  6. HDU 3970 Harmonious Set 容斥欧拉函数

    pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n  求连续整数[0,n), 中随意选一些数使得选出的 ...

  7. HDU 1695 GCD (容斥原理+欧拉函数)

    题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...

  8. HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...

  9. HDU 4135 Co-prime(容斥:二进制解法)题解

    题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也 ...

随机推荐

  1. Jmeter(三十六)_运行过程中改变负载

    顾名思义,jmeter在做性能测试时,可以在不停止脚本的情况下修改负载压力,达到期望的测试效果.我们将通过Constant Throughput Timer(吞吐量计时器)和Beanshell服务器来 ...

  2. nodeJs配置

    1.  vi /etc/profile export NODE_HOME=/opt/node-v6.9.1-linux-x64export PATH=$PATH:$NODE_HOME/binexpor ...

  3. make太慢了,加快编译速度的方法 make -j

    make -j 既然IO不是瓶颈,那CPU就应该是一个影响编译速度的重要因素了. 用make -j带一个参数,可以把项目在进行并行编译,比如在一台双核的机器上,完全可以用make -j4,让make最 ...

  4. Python_每日习题_0003_完全平方数

    # 题目 一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少? # 程序分析 因为168对于指数爆炸来说实在太小了,所以可以直接省略数学分析,用最朴素的方法来获取 ...

  5. python实现一个二分查找

    二分查找: 二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法.但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列 查找过程: 首先,假设表中元素是 ...

  6. 【学习总结】Git学习-参考廖雪峰老师教程九-使用码云

    学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...

  7. centos 6.9:device eth0 does not seem to be present

    VMware上安装centos6.9,克隆一个新虚机,网卡不能桥接获得宿主机网络地址. https://blog.csdn.net/xiaobei4929/article/details/405152 ...

  8. Day 5-5 绑定方法与非绑定方法

    绑定方法与非绑定方法: 在类内部定义的绑定方法,分两大类: classmehtod是给类用的,即绑定到类,类在使用时会将类本身当做参数传给类方法的第一个参数(即便是对象来调用也会将类当作第一个参数传入 ...

  9. RandomStringUtils

    System.out.println(RandomStringUtils.random(5));//随机多少个随机字符中文环境乱码 System.out.println(RandomStringUti ...

  10. SpringBoot 标签之启动

    在SpringBoot中入口我们使用: package com.sankuai.qcs.regulation.traffic; import org.springframework.boot.Spri ...