GCD HDU - 1695 (欧拉 + 容斥)
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17385 Accepted Submission(s): 6699
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
1 3 1 5 1
1 11014 1 14409 9
Case 2: 736427
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int ans;
LL tot[maxn + ];
int prime[maxn+], phi[maxn+];
bool vis[maxn+];
void getphi()
{
ans = ;
phi[] = ;
for(int i=; i<=maxn; i++)
{
if(!vis[i])
{
prime[++ans] = i;
phi[i] = i - ;
}
for(int j=; j<=ans; j++)
{
if(i * prime[j] > maxn) break;
vis[i * prime[j]] = ;
if(i % prime[j] == )
{ phi[i * prime[j]] = phi[i] * prime[j]; break;
}
else
phi[i * prime[j]] = phi[i] * (prime[j] - );
}
}
} int get_cnt(int n, int m)
{
int ans = ;
for(int i = ; i * i <= n; i++)
{
if(n % i) continue;
while(n % i == ) n /= i;
prime[ans++] = i;
}
if(n != ) prime[ans++] = n;
int res = ;
for(int i = ; i < ( << ans); i++)
{
int tmp = , cnt2 = ;
for(int j = ; j < ans; j++)
{
if(((i >> j) & ) == ) continue;
tmp *= prime[j];
cnt2++;
}
if(cnt2 & ) res += m / tmp;
else res -= m / tmp;
}
return m - res;
} int main()
{
getphi();
int a, b, c, d, k;
for(int i = ; i < maxn; i++)
{
tot[i] = tot[i - ] + phi[i]; }
int T, kase = ;
cin >> T;
while(T--)
{
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
if(k == )
{
printf("Case %d: 0\n", ++kase);
continue;
}
int n = b / k, m = d / k;
LL sum = tot[n > m ? m : n];
// cout << sum << endl;
if(m > n) swap(n, m);
for(int i =m + ; i <= n; i++)
{
sum += get_cnt(i, m);
}
printf("Case %d: %lld\n", ++kase, sum);
} return ;
}
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17385 Accepted Submission(s): 6699
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
1 3 1 5 1
1 11014 1 14409 9
Case 2: 736427
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
GCD HDU - 1695 (欧拉 + 容斥)的更多相关文章
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
- HDU 4135 Co-prime 欧拉+容斥定理
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu 1695 欧拉函数+容斥原理
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion
http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...
- GCD nyoj 1007 (欧拉函数+欧几里得)
GCD nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 The greatest common divisor ...
- HDU 3970 Harmonious Set 容斥欧拉函数
pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n 求连续整数[0,n), 中随意选一些数使得选出的 ...
- HDU 1695 GCD (容斥原理+欧拉函数)
题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...
- HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...
- HDU 4135 Co-prime(容斥:二进制解法)题解
题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也 ...
随机推荐
- 我的2017&2018
最近项目进入验收阶段,所以上班没那么忙碌了,但是怎么说呢,我可能天生是闲不住的主,觉得浑身不自在(我这样的人是不是特别不会享福),此处应该有个笑脸哈. 翻看了博客园好几个大牛写的技术文章,感慨大牛不愧 ...
- Python-常见面试题-持续更新
1.请你简要介绍一下Python的生成器是什么 答:Python生成器是一个返回可以迭代对象的函数,可以被用作控制循环的迭代行为. 生成器类似于返回值为数组的一个函数,这个函数可以接受参数,可以被调用 ...
- python学习之第八篇——字典嵌套之字典中嵌套字典
cities = { 'shanghai':{'country':'china','population':10000,'fact':'good'}, 'lendon':{'country':'eng ...
- PS制作恐怖逼真滴血文字
序言:各位同学们好,今天给大家带来一例恐怖逼真滴血文字效果的制作教程,本人比较喜欢看恐怖游戏,是看不是玩,然后就突发奇想地做了这件作品,最后的效果我很喜欢,而且制作起来难度并不大,在此分享自己在作图时 ...
- JUnit的配置及使用
一.安装插件JUnitGenertor V2.0 File->Setting->Plugins->在搜索框里输入JUintGenerator V2.0 二.导入JUnit相关jar包 ...
- package-lock.json和package.json的作用
转自:https://www.cnblogs.com/cangqinglang/p/8336754.html package-lock.json的作用就是锁定安装依赖时包的版本,并且需要上传到git, ...
- API知识点总结
一.开发api接口开放给其他人调用的api接口(短信接口,支付宝api) 二.api安全弱点数据窃取(解决加密),数据篡改(解决MD5),数据泄露(爬虫技术)(解决令牌)1.加密(HTTPS传输-收费 ...
- 使用 idea 产生错误The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized
解决方法 spring.datasource.url=jdbc:mysql://localhost:3306/spring_cache?serverTimezone=GMT%2B8
- combineByKey
示例:
- java学习之—使用栈实现字符串数字四则运算
/** * 使用栈存储后缀表达式 * Create by Administrator * 2018/6/13 0013 * 下午 2:25 **/ public class StackX { priv ...