题目描述

学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成
两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将
所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在
关于s,t的割中容量最小的割。
而对冲刺NOI竞赛的选手而言,求带权图中两点的最小割已经不是什么难事了。我们可以把
视野放宽,考虑有N个点的无向连通图中所有点对的最小割的容量,共能得到N(N−1)
2个数值。
这些数值中互不相同的有多少个呢?这似乎是个有趣的问题。

输入

输入文件第一行包含两个数N,M,表示点数和边数。接下来M行,每行三个数u,v,w,
表示点u和点v(从1开始标号)之间有条边权值是w。
1<=N<=850 1<=M<=8500 1<=W<=100000

输出

输出文件第一行为一个整数,表示个数。

样例输入

4 4
1 2 3
1 3 6
2 4 5
3 4 4

样例输出

3
 
最小割树模板题,暴力枚举任意两个点在最小割树上求路径边权最小值,用$map$存一下权值即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define pr pair<int,int>
using namespace std;
int head[900];
int to[1800];
int val[1800];
int next[1800];
int dep[900];
int tot;
int f[900][12];
int g[900][12];
int n,m,k;
int u,v,w;
int id[900];
int now;
map<int,int>mp;
void add_edge(int u,int v,int w)
{
next[++tot]=head[u];
head[u]=tot;
to[tot]=v;
val[tot]=w;
}
namespace DINIC
{
int tot=1;
int S,T;
int q[900];
int d[900];
int head[900];
int next[18000];
int val[18000];
int col[900];
int to[18000];
int vir[18000];
void add(int u,int v,int w)
{
next[++tot]=head[u];
head[u]=tot;
to[tot]=v;
val[tot]=w;
vir[tot]=w;
}
bool bfs(int S,int T)
{
int l=0,r=0;
memset(d,-1,sizeof(d));
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
l++;
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i])
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
}
if(d[T]==-1)
{
return false;
}
else
{
return true;
}
}
int dfs(int x,int maxflow)
{
if(x==T)
{
return maxflow;
}
int nowflow;
int used=0;
for(int i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
nowflow=dfs(to[i],min(maxflow-used,val[i]));
val[i]-=nowflow;
val[i^1]+=nowflow;
used+=nowflow;
if(nowflow==maxflow)
{
return maxflow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
int dinic()
{
for(int i=2;i<=tot;i++)
{
val[i]=vir[i];
}
int res=0;
while(bfs(S,T)==true)
{
res+=dfs(S,0x3f3f3f3f);
}
return res;
}
void find(int x)
{
col[x]=now;
for(int i=head[x];i;i=next[i])
{
if(col[to[i]]!=now&&val[i])
{
find(to[i]);
}
}
}
void build(int l,int r)
{
if(l>=r)
{
return ;
}
S=id[l],T=id[l+1];
int cut=dinic();
now++;
find(S);
int L=l,R=r;
for(int i=l;i<=r;i++)
{
if(col[id[i]]==now)
{
q[L++]=id[i];
}
else
{
q[R--]=id[i];
}
}
for(int i=l;i<=r;i++)
{
id[i]=q[i];
}
add_edge(S,T,cut);
add_edge(T,S,cut);
build(l,L-1);
build(R+1,r);
}
};
void dfs(int x)
{
for(int i=1;i<=10;i++)
{
f[x][i]=f[f[x][i-1]][i-1];
g[x][i]=min(g[x][i-1],g[f[x][i-1]][i-1]);
}
for(int i=head[x];i;i=next[i])
{
if(to[i]!=f[x][0])
{
dep[to[i]]=dep[x]+1;
f[to[i]][0]=x;
g[to[i]][0]=val[i];
dfs(to[i]);
}
}
}
int lca(int x,int y)
{
int res=1<<30;
if(dep[x]<dep[y])
{
swap(x,y);
}
int d=dep[x]-dep[y];
for(int i=0;i<=10;i++)
{
if(d&(1<<i))
{
res=min(res,g[x][i]);
x=f[x][i];
}
}
if(x==y)
{
return res;
}
for(int i=10;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
res=min(res,g[x][i]);
res=min(res,g[y][i]);
x=f[x][i];
y=f[y][i];
}
}
res=min(min(g[x][0],g[y][0]),res);
return res;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
DINIC::add(u,v,w);
DINIC::add(v,u,w);
}
for(int i=1;i<=n;i++)
{
id[i]=i;
}
DINIC::build(1,n);
dfs(1);
int ans=0;
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
if(!mp[lca(i,j)])
{
mp[lca(i,j)]=1;
ans++;
}
}
}
printf("%d",ans);
}

BZOJ4519[Cqoi2016]不同的最小割——最小割树+map的更多相关文章

  1. [bzoj4519][Cqoi2016]不同的最小割_网络流_最小割_最小割树

    不同的最小割 bzoj-4519 Cqoi-2016 题目大意:题目链接. 注释:略. 想法: 我们发现这和最小割那题比较像. 我们依然通过那个题说的办法一样,构建最小割树即可. 接下来就是随便怎么处 ...

  2. scu - 3254 - Rain and Fgj(最小点权割)

    题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉 ...

  3. 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流

    最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...

  4. 3532: [Sdoi2014]Lis 最小字典序最小割

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 865  Solved: 311[Submit][Status] ...

  5. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  6. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  7. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  8. 紫书 例题 11-2 UVa 1395(最大边减最小边最小的生成树)

    思路:枚举所有可能的情况. 枚举最小边, 然后不断加边, 直到联通后, 这个时候有一个生成树.这个时候,在目前这个最小边的情况可以不往后枚举了, 可以直接更新答案后break. 因为题目求最大边减最小 ...

  9. 【BZOJ4519】[Cqoi2016]不同的最小割 最小割树

    [BZOJ4519][Cqoi2016]不同的最小割 Description 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分 ...

  10. BZOJ4519 CQOI2016不同的最小割(最小割+分治)

    最小割树:新建一个图,包含原图的所有点,初始没有边.任取两点跑最小割,给两点连上权值为最小割的边,之后对于两个割集分别做同样的操作.最后会形成一棵树,树上两点间路径的最小值即为两点最小割.证明一点都不 ...

随机推荐

  1. 吉特日化MES-日化生产称料基本步骤

    在日化行业称料是一个非常重要的环节,整个生产过程中称料所占据的时间也比较长,特别是遇到对料体精度高,量大的情况下称料都比较困难,汇总一下人工称料的基本过程: (1) 称量任务准备:根据生产工单或者生产 ...

  2. 使用Thrift让Python和C#可以相互调用

    在聊如何使用Thrift让Python和C#可以互相调用之前,我们先来看看下面的话题. 一.什么是微服务.微服务的特征.诞生的背景.优势和不足 微服务:使用一套小服务来开发单个应用的方式,每个服务运行 ...

  3. Microsoft Tech Summit 2018 课程简述:利用 Windows 新特性开发出更好的手绘视频应用

    概述 Microsoft Tech Summit 2018 微软技术暨生态大会将于10月24日至27日在上海世博中心举行,这也会是国内举办的最后一届 Tech Summit,2019 年开始会以 Mi ...

  4. 程序员修仙之路- CXO让我做一个计算器!!

    菜菜呀,个税最近改革了,我得重新计算你的工资呀,我需要个计算器,你开发一个吧 CEO,CTO,CFO于一身的CXO X总,咱不会买一个吗? 菜菜 那不得花钱吗,一块钱也是钱呀··这个计算器支持加减乘除 ...

  5. Django+nginx+uwsgi部署教程

    00-所需工具 xshell:https://www.netsarang.com/zh/downloading/?token=ZlZnVUNsWDJuM0VaZnVPUjZST1dwd0AzYlNte ...

  6. net平台下c#操作ElasticSearch详解

    net平台下c#操作ElasticSearch详解 ElasticSearch系列学习 ElasticSearch第一步-环境配置 ElasticSearch第二步-CRUD之Sense Elasti ...

  7. Git更新本地仓库

    1.查看远程仓库git remote -v2.从远程获取最新版本到本地git fetch origin master:temp3.比较本地的仓库与远程仓库的区别git diff temp4.合并tem ...

  8. Ubuntu Linux Recovery Mode

    在安全模式/修復模式有以下的選項︰resume Resume normal boot繼續正常啟動作業,供不小心誤入此選單的使用者開機使用.(继续以正常模式启动) clean Try to make f ...

  9. Linux kernel support docker storage driver aufs

    How to make docker use aufs in CentOS 7? - Server Faulthttps://serverfault.com/questions/650208/how- ...

  10. WCF使用相关

    1.不显示WCF服务主机 在WCF项目属性中的WCF选项卡总关闭下图的选项 2.在其他项目中承载WCF服务 其他加载的操作一致,需要把WCF的endpoint和behavior节点复制到 启动服务的那 ...