前面跟大家扯了这么多废话,终于到具体的机器学习模型了。大部分机器学习的教程,总要从监督学习开始讲起,而监督学习的众多算法当中,又以分类算法最为基础,原因在于分类问题非常的单纯直接,几乎不需要引入一些其它概念,因此我们就先从分类器开始讲起。
        还记得第一节介绍的Spark ML架构吗?从Param起始,Spark ML通过PipelineStage引入了三个基本概念,Transformer,Estimator,Model,其中T和E本质上都是PipelineState,E能够产生M,而M本质上又是一个T,因此M是连接T和E的桥梁。又由于监督学习问题本质上都是为了做出“预测”,因此给出了一个监督学习的模板,Predictor,Predictor家族有三个成员,第一是PredictorParam,包含了这个预测器必须包含的参数,第二是Predictor本身,它是一个混入了PredictorParam的Estimator,第三是PredictorModel,它是一个混入了PredictorParam的Model。因此,通过预测器模板Predictor,我们了解到,一个具体的预测器一定要包含三个部分:Param,Predictor,Model。其中Param用以规定,这个预测器需要包含的特殊参数,Predictor是一个Estimator,用于实际执行算法,PredictorModel是一个数据结构,用于保存算法结果。我们看到,Predictor和PredictorModel都包含了PredictorParam这个结构,说明它们都包含了同样的预测器的参数。
        这样我们在介绍分类器的时候,就有一个整体框架了。分类器本身也是一个预测器,它同样包含了三要素,参数、学习器、模型,在我们深入学习分类器的代码时会发现,几乎所有的分类器都明确定义了自己的三个要素。
        在classification文件夹下面,包含了两类分类器,第一类是虚拟分类器。虚拟分类器并不执行任何具体的分类任务,它们是为不同的分类器准备模板。这其中最基本的一个模板就是Classifier,它是所有分类器的模板,它直接继承自Predictor,同时也包含了Predictor三要素。我们知道,分类器按照是否能输出分类概率,又可以分为概率性分类器和非概率分类器,概率性的分类器除了能输出分类结果之外,还能输出选择该分类的概率,比如逻辑回归、朴素贝叶斯等,另外一类是非概率分类器,比如线性支持向量机。对于概率类的分类器,这里专门给出了一个抽象,就是ProbabilisticClassifier,提供了输出分类选择概率的功能。另外,针对多分类问题,给出了OneVsRest分类器,它其实相当于一种分类器的策略,并不能算是一个单独的分类器。
        第二类就是具体分类器,刚才提到了,这里的具体分类器中,除了LinearSVC线性支持向量机分类器之外,其它都是概率性的分类器。因此这里我们先介绍LinearSVC的实现。
        说起支持向量机,很多人会想到SMO算法,但实际上针对线性可分问题,在用线性支持向量机解决时,根本用不着对偶化,因为线性支持向量机,本身就可以被看做是一个有Hinge损失的线性分类问题,因此这里直接使用了optim模块的HingeAggregator。
        剩下的就是概率性的分类器,首先要介绍的是决策树分类器,它需要用到另外一个tree模块(多说一句,Spark ML对于决策树的核心算法都包含在tree模块中,其使用的分布式计算思路与广义线性模型非常不同,我们将在后面的随笔中介绍),需要注意的是,Spark ML包中决策树分类器其实就是随机森林分类器的一个特例,当森林中树的数量为1时,就是决策树分类器。因此同随机森林分类器一样,我们在介绍tree模块的时候再详细讨论它们的实现。另外,由于GBTClassifier也需要用到tree模块中的树的实现,因此也放在后面讲。
        接下来就是LogisticRegressionClassifier,它包含了二类分类和多类分类两种实现。前面我们在介绍机器学习算法从单机到分布式的转换时,提到了关键是treeAggregator这个函数,而在逻辑回归中,就用到了在optim模块中实现的LogisticAggregator。具体的学习算法,都是使用的breeze库中的优化算法,比如,当正则是L2时,选择LBFGS,当正则是L1是,选择OWLQN,当正则是L2且w参数受限(设置了最大值或/和最小值)时,使用LBFGSB。
        接下来是感知机分类器,MultilayerPerceptronClassifier,它的实现需要依赖ann库中的神经网络实现,这里我们也不作探讨。最后是朴素贝叶斯分类器,NaiveBayes,这个分类器本质上是基于统计的,不需要优化计算。
        以上就是对分类器模块的介绍,重在理清框架,说的不对的地方,还请各位批评指正。

Spark ML源码分析之三 分类器的更多相关文章

  1. Spark ML源码分析之二 从单机到分布式

            前一节从宏观角度给大家介绍了Spark ML的设计框架(链接:http://www.cnblogs.com/jicanghai/p/8570805.html),本节我们将介绍,Spar ...

  2. Spark ML源码分析之一 设计框架解读

    本博客为作者原创,如需转载请注明参考           在深入理解Spark ML中的各类算法之前,先理一下整个库的设计框架,是非常有必要的,优秀的框架是对复杂问题的抽象和解剖,对这种抽象的学习本身 ...

  3. Spark ML源码分析之四 树

            之前我们讲过,在Spark ML中所有的机器学习模型都是以参数作为划分的,树相关的参数定义在treeParams.scala这个文件中,这里构建一个关于树的体系结构.首先,以Decis ...

  4. 第十一篇:Spark SQL 源码分析之 External DataSource外部数据源

    上周Spark1.2刚发布,周末在家没事,把这个特性给了解一下,顺便分析下源码,看一看这个特性是如何设计及实现的. /** Spark SQL源码分析系列文章*/ (Ps: External Data ...

  5. 第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query

    /** Spark SQL源码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache在 ...

  6. 第九篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 cache table

    /** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效 ...

  7. 第七篇:Spark SQL 源码分析之Physical Plan 到 RDD的具体实现

    /** Spark SQL源码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源码分析之Physical Plan,本文将介绍Physical Plan的toRDD的具体实现细节: ...

  8. 第一篇:Spark SQL源码分析之核心流程

    /** Spark SQL源码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人 ...

  9. 【Spark SQL 源码分析系列文章】

    从决定写Spark SQL源码分析的文章,到现在一个月的时间里,陆陆续续差不多快完成了,这里也做一个整合和索引,方便大家阅读,这里给出阅读顺序 :) 第一篇 Spark SQL源码分析之核心流程 第二 ...

随机推荐

  1. IDE添加自定义注释

    前言:最近在找IDE自定义模板注释时,十分不愉快,找了很久,才找到适合自己的,故记录一下 一.IDE自定义类注释:       1:打开自定义模板界面,并添加自定义内容: 2:新建类,效果如下 备注: ...

  2. JAVA多线程学习十七 - 面试题

    前面针对多线程相关知识点进行了学习,那么我们来来看看常见的面试题: 1. 空中网面试题1 package com.kongzhongwang.interview; import java.util.c ...

  3. redis中scan和keys的区别

    scan和keys的区别 redis的keys命令,通来在用来删除相关的key时使用,但这个命令有一个弊端,在redis拥有数百万及以上的keys的时候,会执行的比较慢,更为致命的是,这个命令会阻塞r ...

  4. 收集有用的 Javascript 片段

    内容目录 数组 arrayMax arrayMin chunk compact countOccurrences deepFlatten difference distinctValuesOfArra ...

  5. MySQL 主从复制与读写分离 (超详细图文并茂小白闭着眼睛都会做)

    MySQL 主从复制与读写分离 1.什么是读写分离 2.为什么要读写分离 3.什么时候要读写分离 4.主从复制与读写分离 5.mysql支持的复制类型 6.主从复制的工作过程 7.MySQL主从复制延 ...

  6. 【POJ2942】Knights of the Round Table(二分图 点双联通分量)

    题目链接 大意 给定\(N\)个点与\(M\)个关系,每个关系表示某两个点间没有直接的边相连,求不在所有奇环上的点的个数. (\(1\le N\le 1e3,1\le M\le 1e6\)) 思路 考 ...

  7. docker | jenkins 实现自动化CI/CD,后端躺着把运维的钱挣了!(下)

    前言 在上一篇文章中,我们使用docker编写Dockerfile文件,将我们自己的项目构建成镜像,然后发布到Docker Hub中,并且用自己的云服务器拉取Docker Hub上我们自己上传的项目镜 ...

  8. 4、网络并发编程--僵尸进程、孤儿进程、守护进程、互斥锁、消息队列、IPC机制、生产者消费者模型、线程理论与实操

    昨日内容回顾 操作系统发展史 1.穿孔卡片 CPU利用率极低 2.联机批处理系统 CPU效率有所提升 3.脱机批处理系统 CPU效率极大提升(现代计算机雏形) 多道技术(单核CPU) 串行:多个任务依 ...

  9. Note -「最大团-最小度不等式」

      这是什么奇怪的名字qwq. 一些定义   只为便于理解,没有苛求专业的定义. 简单无向图:不存在重边.自环的无向图. \(\delta(G)\):无向图 \(G\) 中结点的最小度数.即 \(\m ...

  10. Python基础—函数(Day9)

    一.函数的定义 def 关键字,定义一个函数 my_len 函数名(书写规则与变量名一样) def与函数名中间一个空格. def与函数名中间一个空格. 函数名():加冒号 函数体 my_len()#函 ...