import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
import sympy def plot_direction_field(x, y_x, f_xy, x_lim=(-5, 5), y_lim=(-5, 5), ax=None):
f_np = sympy.lambdify((x, y_x), f_xy, 'numpy')
x_vec = np.linspace(x_lim[0], x_lim[1], 20)
y_vec = np.linspace(y_lim[0], y_lim[1], 20) if ax is None:
_, ax = plt.subplots(figsize=(4, 4))
# dx相邻两值的距离
dx = x_vec[1] - x_vec[0]
dy = y_vec[1] - y_vec[0] for m, xx in enumerate(x_vec):
for n, yy in enumerate(y_vec):
Dy = f_np(xx, yy) * dx
Dx = 0.8 * dx ** 2 / np.sqrt(dx ** 2 + Dy ** 2)
Dy = 0.8 * Dy * dy / np.sqrt(dx ** 2 + Dy ** 2)
ax.plot([xx - Dx / 2, xx + Dx / 2], [yy - Dy / 2, yy + Dy / 2], 'b', lw=0.5) ax.axis('tight')
# y对x的偏导=f_xy
ax.set_title(r"$%s$" % (sympy.latex(sympy.Eq(y_x.diff(x), f_xy))), fontsize=18) return ax # 自变量
x = sympy.symbols('x')
# 因变量
y = sympy.Function('y')
f = x - y(x) ** 2 f_np = sympy.lambdify((y(x), x), f)
y0 = 1
xp = np.linspace(0, 5, 100)
# func 初始值 x的范围
yp = integrate.odeint(f_np, y0, xp)
xn = np.linspace(0, -5, 100)
yn = integrate.odeint(f_np, y0, xn) # 画场线图
fig, ax = plt.subplots(1, 1, figsize=(4, 4))
plot_direction_field(x, y(x), f, ax=ax)
ax.plot(xn, yn, 'b', lw=2)
ax.plot(xp, yp, 'r', lw=2)
plt.show()

from sympy import *
x = symbols("x")
y = symbols("y",cls=Function)
eq1 = diff(y(x),x,2)-5*diff(y(x),x)+6*y(x)
eq2 = diff(y(x),x,2)-5*diff(y(x),x)+6*y(x)-x*exp(2*x)
res = dsolve(eq1,y(x))
res2 = dsolve(eq2, y(x))
print(res)
print(res2)
Eq(y(x), (C1 + C2*exp(x))*exp(2*x))
Eq(y(x), (C1 + C2*exp(x) - x**2/2 - x)*exp(2*x))

from sympy import *
x = symbols("x")
y = symbols("y",cls=Function)

eq1 = diff(y(x),x,2)-5*diff(y(x),x)+6*y(x)
eq2 = diff(y(x),x,2)-5*diff(y(x),x)+6*y(x)-x*exp(2*x)

res1 = dsolve(eq1,y(x),ics={y(0):1,diff(y(x),x).subs(x,0):0})
res2 = dsolve(eq2,y(x),ics={y(0):1,y(2):0})
print(res1)
print(res2)
Eq(y(x), (3 - 2*exp(x))*exp(2*x))
Eq(y(x), (-x**2/2 - x + 3*exp(x)/(-1 + exp(2)) + (-4 + exp(2))/(-1 + exp(2)))*exp(2*x))

 

基于python的数学建模---场线与数值解(微分方程)的更多相关文章

  1. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  2. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  3. Python小白的数学建模课-B4. 新冠疫情 SIR模型

    Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...

  4. Python小白的数学建模课-15.图论基本概念

    图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...

  5. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  6. Python小白的数学建模课-A1.国赛赛题类型分析

    分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...

  7. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  8. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  9. Python小白的数学建模课-09 微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  10. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

随机推荐

  1. KingbaseES 中实现mysql的from_days和to_days

    mysql中两个函数的说明: TO_DAYS(date)给出一个日期date,返回一个天数. FROM_DAYS(N)给出一个天数N,返回一个DATE值. 两个函数比较计算的日期都是 0000-01- ...

  2. 字符类数据类型和oracle字符类型的区别

    为兼容Oracle的数据类型,KingbaseES扩展了Oracle的NUMBER.VARCHAR2.CHAR(n)和DATE类型.该措施使得移植Oracle的Create Table等DDL语句时, ...

  3. JTS TopologyException 问题

    计算2个几何相交结果时候,报错了: val geometry = polygon.intersection(lineString) 日志如下 org.locationtech.jts.geom.Top ...

  4. MySQL主从同步报错故障处理记录

    从库上记录删除失败,Error_code: 1032 问题描述:在master上删除一条记录,而slave上找不到,导致报错 Last_SQL_Error: Could not execute Del ...

  5. 在k8s集群中安装traefik,并结合kuboard界面使用

    安装traefik 参考步骤:https://blog.51cto.com/u_13760351/2764008?xiangguantuijian&01 修改好的四个yaml文件下载地址:ht ...

  6. Beats:使用 Elastic Stack 记录 Python 应用日志

    文章转载自:https://elasticstack.blog.csdn.net/article/details/112259500 日志记录实际上是每个应用程序都必须具备的功能.无论你选择基于哪种技 ...

  7. 使用docker-compose部署Django项目

    先从最基本的功能开始 在一切工作开始前,需要先编辑好三个必要的文件. 第一步,因为应用将要运行在一个满足所有环境依赖的 Docker 容器里面,那么我们可以通过编辑 Dockerfile 文件来指定 ...

  8. ELK基于ElastAlert实现日志的微信报警 ---docker环境

    参考网址:https://github.com/anjia0532/elastalert-docker 1.拉取镜像: docker pull anjia0532/elastalert-docker: ...

  9. 我的 Kafka 旅程 - broker

    broker在kafka的服务端运行,一台服务器相当于一个broker:每个broker下可以有多个topic,每个topic可以有多个partition,在producer端可以对消息进行分区,每个 ...

  10. AdaBoost:自适应提升算法的原理及其实现

    AdaBoost:通过改变训练样本权重来学习多个弱分类器并线性组合成强分类器的Boosting算法. Boosting方法要解答的两个关键问题:一是在训练过程中如何改变训练样本的权重或者概率分布,二是 ...