欢迎来到 GreatSQL社区分享的MySQL技术文章,如有疑问或想学习的内容,可以在下方评论区留言,看到后会进行解答

  • GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。
  • 1、测试环境

  • 2、测试数据

GreatSQL马上正式开源了,这次又新增了两个重磅特性:InnoDB事务锁优化 以及 InnoDB引擎的并行查询优化,这两个特性是由华为鲲鹏计算团队贡献的Patch合并而来。

InnoDB并行查询优化怎么实现的?

根据B+树的特点,可以将B+树划分为若干子树,此时多个线程可以并行扫描同一张InnoDB表的不同部分。对执行计划进行多线程改造,每个子线程执行计划与MySQL原始执行计划一致,但每个子线程只需扫描表的部分数据,子线程扫描完成后再进行结果汇总。通过多线程改造,可以充分利用多核资源,提升查询性能。

优化后,在TPC-H测试中表现优异,最高可提升30倍,平均提升15倍。

该特性适用于周期性数据汇总报表之类的SAP、财务统计等业务,例如月初、月底跑批业务等。

使用限制:

  • 暂不支持子查询,可想办法改造成JOIN。

  • 暂时只支持ARM架构平台,X86架构平台优化也会尽快完成。

关于该Patch详情见:https://support.huaweicloud.com/fg-kunpengdbs/kunpengdbs_20_0005.html

本文针对 InnoDB引擎的并行查询优化 特性进行对比测试。

1、测试环境

服务器:神州鲲泰R222,华为Hi1616 * 2(主频 2400 MHz 共64个逻辑CPU),256G内存。

操作系统:Docker 20.10.2,Docker容器下的CentOS Linux release 7.9.2009,Linux 4.15.0-29-generic。

本次测试采用TPC-H,dbgen构造测试数据参数 dbgen -vf -s 50,导入后数据库物理大小约70G。GreatSQL关键配置:

#运行Q10测试时,需要较大临时表
temptable_max_ram = 6G #使得本测试基于纯内存场景
innodb_buffer_pool_size=96G #InnoDB并行查询优化
#global级别,设置并行查询的开关,bool值,on/off。默认off,关闭并行查询特性。可在线动态修改。
force_parallel_execute = ON #global级别,设置系统中总的并行查询线程数。有效值的范围是(0, ULONG_MAX),默认值是64。
parallel_max_threads = 64 #global级别,并行执行时leader线程和worker线程使用的总内存大小上限。有效值的范围是(0, ULONG_MAX),默认值是1G
parallel_memory_limit = 32G

2、测试数据

测试过程中,注意要确保每次查询都是基于纯内存的场景,也就是确保innodb_buffer_pool_size大于数据库物理大小,并确认查询过程中没有额外的物理I/O发生。

个别SQL例如Q10在运行过程中会产生临时表(Using temporary),这时候需要加大 temptable_max_ram 选项值。该选项默认值1G,在上述测试数据量前提下,大概需要加大到4G才能hold住。如果该选项值不够的话,可能运行过程中会提示诸如 The table '/tmp/#sql57_a1_0' is full 这样的错误提示,然后退出查询,这是MySQL的BUG#99100。

InnoDB并行查询特性通过HINT语法可以很方便地使用,首先确认启用了该特性(可在线动态打开):

$ mysqladmin var|grep force_parallel_execute
| force_parallel_execute | ON

那么默认所有的SQL只要符合条件,即可自动采用并行查询,通过查看执行计划确认:

mysql> EXPLAIN SELECT ... FROM ... WHERE ...
...
Parallel execute (4 workers)
...

可以看到执行计划输出中包含 Parallel execute (4 workers) 关键字,这就表示最高可并行4个线程查询。

也可以查看树状执行计划:

mysql> EXPLAIN FORMAT=TREE SELECT ... FROM ... WHERE ...
...
| -> Limit: 1 row(s)
-> Sort: lineitem.l_returnflag, lineitem.l_linestatus, limit input to 1 row(s) per chunk
-> Table scan on <temporary>
-> Aggregate using temporary table
-> Parallel scan on <temporary>
-> Sort: lineitem.l_returnflag, lineitem.l_linestatus
-> Table scan on <temporary>
-> Aggregate using temporary table
-> Filter: (lineitem.l_shipdate <= <cache>((DATE'1998-12-01' - interval '88' day))) (cost=6342898.28 rows=19669815)
-> PQblock scan on lineitem (cost=6342898.28 rows=59015354)
...

可以看到执行计划中包含 PQblock scan on ... 关键字,并且注意到同一行里提示 cost=6342898.28,这是启用并行查询的条件之一,也就是 cost 超过了 parallel_cost_threshold = 1000 设置的阈值开关。

一条SQL若不想启用并行查询,加上相应的HINT即可:

mysql> SELECT /*+ NO_PQ */ ... FROM ... WHERE ...

也可以动态调整并行线程数为最高64线程:

mysql> SELECT /*+ PQ(64) */ ... FROM ... WHERE ...

好了,直接查看结果对比数据:

从这个测试结果简单概括几条:

  • 1、平均提升约14倍,最高提升约32倍。
  • 2、如果并发量更高,则优化效果更好。
  • 3、Q5原始SQL性能提升不多,调整JOIN顺序后性能提升显著(从只提升28%跃升到11倍)。

GreatSQL将于近期正式开源,欢迎关注。

Enjoy GreatSQL

文章推荐:

GreatSQL MGR FAQ

https://mp.weixin.qq.com/s/J6wkUpGXw3YkyEUJXiZ9xA

万答#12,MGR整个集群挂掉后,如何才能自动选主,不用手动干预

https://mp.weixin.qq.com/s/07o1poO44zwQIvaJNKEoPA

『2021数据技术嘉年华·ON LINE』:《MySQL高可用架构演进及实践》

https://mp.weixin.qq.com/s/u7k99y6i7riq7ScYs7ySnA

一条sql语句慢在哪之抓包分析

https://mp.weixin.qq.com/s/AYibbzl860D90rOeyjB6IQ

万答#15,都有哪些情况可能导致MGR服务无法启动

https://mp.weixin.qq.com/s/inSGpd0Q_XIl2Mb-VsvNsA

技术分享 | 为什么MGR一致性模式不推荐AFTER

https://mp.weixin.qq.com/s/rNeq479RNsklY1BlfKOsYg

关于 GreatSQL

GreatSQL是由万里数据库维护的MySQL分支,专注于提升MGR可靠性及性能,支持InnoDB并行查询特性,是适用于金融级应用的MySQL分支版本。

Gitee:

https://gitee.com/GreatSQL/GreatSQL

GitHub:

https://github.com/GreatSQL/GreatSQL

Bilibili:

https://space.bilibili.com/1363850082/video

微信&QQ群:

可搜索添加GreatSQL社区助手微信好友,发送验证信息“加群”加入GreatSQL/MGR交流微信群

QQ群:533341697

微信小助手:wanlidbc

本文由博客一文多发平台 OpenWrite 发布!

GreatSQL重磅特性,InnoDB并行并行查询优化测试的更多相关文章

  1. MySQL · 引擎特性 · InnoDB 崩溃恢复过程

    MySQL · 引擎特性 · InnoDB 崩溃恢复过程 在前面两期月报中,我们详细介绍了 InnoDB redo log 和 undo log 的相关知识,本文将介绍 InnoDB 在崩溃恢复时的主 ...

  2. MySQL · 引擎特性 · InnoDB 事务子系统介绍

    http://mysql.taobao.org/monthly/2015/12/01/ 前言 在前面几期关于 InnoDB Redo 和 Undo 实现的铺垫后,本节我们从上层的角度来阐述 InnoD ...

  3. MySQL · 引擎特性 · InnoDB index lock前世今生

    http://mysql.taobao.org/monthly/2015/07/05/ MySQL · 引擎特性 · InnoDB index lock前世今生 前言 InnoDB并发过程中使用两类锁 ...

  4. mysql-5.7 innodb 的并行任务调度详解

    一.innodb并行任务调度是什么: 这里要“考古”一下了,不然问题说不清楚.上大学的时候老师和我们说最初的计算机只有一个核心,并且一次也只能做一件事, 如果你有两件事要用到计算机,在第一件事没有做完 ...

  5. 【Java8新特性】关于并行流与串行流,你必须掌握这些!!

    写在前面 提到Java8,我们不得不说的就是Lambda表达式和Stream API.而在Java8中,对于并行流和串行流同样做了大量的优化.对于并行流和串行流的知识,也是在面试过程中,经常被问到的知 ...

  6. MySQL · 引擎特性 · InnoDB 事务系统

    前言 关系型数据库的事务机制因其有原子性,一致性等优秀特性深受开发者喜爱,类似的思想已经被应用到很多其他系统上,例如文件系统等.本文主要介绍InnoDB事务子系统,主要包括,事务的启动,事务的提交,事 ...

  7. Apache Hudi重磅特性解读之全局索引

    1. 摘要 Hudi表允许多种类型操作,包括非常常用的upsert,当然为支持upsert,Hudi依赖索引机制来定位记录在哪些文件中. 当前,Hudi支持分区和非分区的数据集.分区数据集是将一组文件 ...

  8. MySQL · 引擎特性 · InnoDB redo log漫游(转)

    前言 InnoDB 有两块非常重要的日志,一个是undo log,另外一个是redo log,前者用来保证事务的原子性以及InnoDB的MVCC,后者用来保证事务的持久性. 和大多数关系型数据库一样, ...

  9. Apache Hudi重磅特性解读之存量表高效迁移机制

    1. 摘要 随着Apache Hudi变得越来越流行,一个挑战就是用户如何将存量的历史表迁移到Apache Hudi,Apache Hudi维护了记录级别的元数据以便提供upserts和增量拉取的核心 ...

随机推荐

  1. 08shell脚本

    shell脚本编程 1.1简介 什么是shell脚本 shell脚本: 就是一些命令的集合, 在脚本文件中可以有流程控制, 如顺序, 条件分支和循环等 脚本文件一般一.sh文件为扩展名, 但是不是必须 ...

  2. 利用SignalR创建即时消息

    1. 什么是SignalR? SignalR 是一个及时消息推送,它与.NET 的 WCF ,WebAPI类似 是客户端和服务器进行消息交换的一种工具 2.SignalR 的作用? 它可以实时同步在线 ...

  3. Java命令行传递参数

    目录 命令行传参 代码运行 视频 命令行传参 有时候你希望运行一个程序的时候再传递给它消息. 这要靠传递命令行参数给main()函数实现 package com.broky.base; public ...

  4. 《Unix 网络编程》15:Unix 域协议

    Unix 域协议 ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ 本 ...

  5. Web自动化定位方法以及常用便捷操作

    很遗憾现在才开始给大家逐步分享自动化教程,原本计划着将现有的接口以及app.pc网页端进行自动化处理后再逐步给大家好好分享一下,由于当前实在没必要自动化操作了,所以临时用脑海中的知识再为大家继续更一篇 ...

  6. C语言- 基础数据结构和算法 - 栈的链式存储

    听黑马程序员教程<基础数据结构和算法 (C版本)>, 照着老师所讲抄的, 视频地址https://www.bilibili.com/video/BV1vE411f7Jh?p=1 喜欢的朋友 ...

  7. React中render Props模式

    React组件复用 React组件复用的方式有两种: 1.render Props模式 2.高阶组件HOC 上面说的这两种方式并不是新的APi. 而是利用Raect自身的编码特点,演化而来的固定编码写 ...

  8. UiPath官方视频Level1

    [UiPath官方视频Level1]第一课-UiPath简介https://www.bilibili.com/video/BV1zJ41187vB [UiPath官方视频Level1]第二课-变量和数 ...

  9. 手写一个模拟的ReentrantLock

    package cn.daheww.demo.juc.reentrylock; import sun.misc.Unsafe; import java.lang.reflect.Field; impo ...

  10. 临近梯度下降算法(Proximal Gradient Method)的推导以及优势

    邻近梯度下降法 对于无约束凸优化问题,当目标函数可微时,可以采用梯度下降法求解:当目标函数不可微时,可以采用次梯度下降法求解:当目标函数中同时包含可微项与不可微项时,常采用邻近梯度下降法求解.上述三种 ...