论文信息

论文标题:Cluster-Guided Semi-Supervised Domain Adaptation for Imbalanced Medical Image Classification
论文作者:S. Harada, Ryoma Bise, Kengo Araki
论文来源:ArXiv 2 March 2023
论文地址:download 
论文代码:download
视屏讲解:click

1 摘要

  一种半监督域自适应方法,对医学图像分类任务中常见的类不平衡情况具有鲁棒性。 为了稳健性,提出了一种弱监督聚类流水线来获得高纯度聚类,并在表示学习中利用这些聚类进行域适应。

2 方法

2.1 问题定义

  Consider that we have a set of  $m^{s}$  labeled source samples,  $\mathcal{D}^{s}=\left\{\left(x_{i}^{s}, y_{i}^{s}\right)\right\}_{i=1}^{m^{s}}$ , where  $x_{i}^{s}$  is the  $i$-th image sample in the source domain and  $y_{i}^{s} \in\{1, \ldots, C\}$  is its class label. In the target domain, we have a set of  $m^{t}$  labeled samples,  $\mathcal{D}^{t}=\left\{\left(x_{i}^{t}, y_{i}^{t}\right)\right\}_{i=1}^{m^{t}}$ , and a set of  $m^{u}$  unlabeled target samples,  $\mathcal{D}^{u}=\left\{x_{i}^{u}\right\}_{i=1}^{m^{m}}$ . Then we consider the problem of improving the classification performance using not only  $\mathcal{D}^{s}$  but also  $\left\{\mathcal{D}^{t}, \mathcal{D}^{u}\right\}$ , after adapting  $\left\{\mathcal{D}^{t}, \mathcal{D}^{u}\right\}$  to  $\mathcal{D}^{s}$ . Since we have the labeled samples  $\mathcal{D}^{t}$  in the target domain, this problem is called semi-supervised domain adaptation.

2.2 模型概念图

  

2.3 方法简介

2.3.1 弱监督聚类

通过软约束聚类优化聚类

  第一个聚类优化步骤旨在将每个冲突的聚类(即具有来自不同类别标签的样本的聚类)划分为几个不冲突的聚类。

为此,我们使用“软”约束聚类 [10]。 通常,约束聚类引入了两种类型的约束,称为必须链接和不能链接。 必须链接给一对应该分组到同一个集群的样本,而不能链接给不应该分组的样本。

  在我们的任务中,如果我们在同一个初始簇中找到具有不同标签的样本(通过 k-means),则不能将链接附加到这些样本的所有对。 类似地,如果我们在初始集群中找到具有相同标签的样本,则必须将链接附加到它们。 链接附加后,我们再次执行聚类,同时满足链接的约束。 再次注意,我们使用“软”约束聚类。 由于普通约束聚类,例如硬约束聚类,可能会由于远距离样本的必须链接而导致低纯度聚类,因此我们使用软约束聚类,这允许违反此类必须链接。 应用此步骤后,集群中标记的目标样本始终属于一个类。

  

通过基于比例的分裂进行聚类细化

  第二个聚类细化步骤旨在根据类比例 $\left(p_{1}, \ldots, p_{C}\right)$(即先验类概率)将聚类拆分为更小的聚类,这是由标记的目标样本之间的类比推断的。 这个目标类似于前面的细化步骤,但使用不同的标准。 粗略地说,在第一次细化之后,如果我们发现一个包含一个或多个标记样本的大集群,则该集群将是一个非纯集群,应该将其拆分为更小的集群。

  更具体地说,我们通过使用类比例将较大的集群分成较小的集群。 $\bar{c}_{i}$ 表示第 $i$ 个簇中标记样本的类别,$u_{i}$ 是第 $i$ 个簇中未标记样本的数量。 那么,如果 $m^{u} p_{\bar{c}_{i}} \leq  u_{i}$ ,我们认为集群对于类 $\bar{c}_{i}$ 来说太大了,因此通过 k-means (k = 2) 将其分成两个较小的集群。 因此,即使是小类,我们也可以期待高纯度的簇。

2.3.2 集群引导域适应

  使用上述谨慎步骤给出的聚类结果,我们现在执行聚类引导的域自适应,如 Figs.(c) 和 Figs.(d) 所示。 CNN 模型 $f$ 针对两个目标进行训练。 一种是通过交叉熵损失对所有标记样本 $\mathcal{D}^{s} \cup \mathcal{D}^{t}$ 进行分类,使源样本和标记目标样本靠得更近,如 $Fig. \square(\mathrm{c})$ 所示。 另一种是引导未标记样本 $x_{j}^{u}$ 重新训练后更接近属于同一簇的标记样本 $\boldsymbol{x}_{i}^{t}$(即 $\boldsymbol{x}_{i}^{t}$ 比属于 a 的 $x_{l}^{u}$ 更接近属于同一簇的 $\boldsymbol{x}_{j}^{u}$ 不同的集群)。 更具体地说,我们通过以下目标训练模型:

    $\begin{array}{l}\mathcal{L}_{\mathrm{clu}}\left(\boldsymbol{x}_{i}^{t}, \boldsymbol{x}_{j}^{u}, \boldsymbol{x}_{l}^{u}\right)= \max \left\{\left\|\boldsymbol{f}\left(\boldsymbol{x}_{i}^{t}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{j}^{u}\right)\right\|_{2}^{2}-\left\|\boldsymbol{f}\left(\boldsymbol{x}_{i}^{t}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{l}^{u}\right)\right\|_{2}^{2}+\varepsilon, 0\right\}\end{array}$

  其中 $f(x)$ 表示样本 $x$ 的特征向量,$\varepsilon \in \Re^{+}$ 是边距。 如 $Fig.1(d)$ 所示,通过使用这种损失训练 $f$ 以及标记样本 $x_{i}^{t}$ 的引导,将未标记样本逐渐映射到源域的相应类。 请注意,在此框架中,我们没有为未标记样本提供任何伪标签——未标记样本被用作未标记样本,以帮助使用 $Eq. (1)$ 中标记样本进行表示学习。

3 实验

可视化

  

4 总结

  略

迁移学习《Cluster-Guided Semi-Supervised Domain Adaptation for Imbalanced Medical Image Classification》的更多相关文章

  1. 迁移学习(IIMT)——《Improve Unsupervised Domain Adaptation with Mixup Training》

    论文信息 论文标题:Improve Unsupervised Domain Adaptation with Mixup Training论文作者:Shen Yan, Huan Song, Nanxia ...

  2. 迁移学习(JDDA) 《Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation》

    论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain ad ...

  3. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  4. 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》

    论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...

  5. 虚假新闻检测(CADM)《Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain Mixup》

    论文信息 论文标题:Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversari ...

  6. 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》

    论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...

  7. Unsupervised Domain Adaptation by Backpropagation

    目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...

  8. Deep Transfer Network: Unsupervised Domain Adaptation

    转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...

  9. Unsupervised Domain Adaptation Via Domain Adversarial Training For Speaker Recognition

    年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.        

  10. 论文笔记:Unsupervised Domain Adaptation by Backpropagation

    14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...

随机推荐

  1. pytorch 创建图与叶子节点与根节点

    创建时用户直接给出的为叶子节点,没有fn 由几个叶子节点推导来的为最终结果,为root节点,有fn. 譬如: x=tt.tensor([1],dtype='flaot',requires_grad=T ...

  2. Context,多个组件公用的数据传导方法

    三个组件:输入A组件 输出B组件 TestContext组件,数据x. 方法: 输入端(A):     import TestContext from "TestContext组件路径&qu ...

  3. java mysql删除表中多余的重复记录(多个字段),只留有id最小的记录

    mysql 删除表中多余的重复记录(多个字段),只留有id最小的记录 DELETE FROM 表1 f WHERE (f.字段1,f.字段2) IN ( SELECT 字段1,字段2 FROM 表1 ...

  4. Java发送http请求携带token,使用org.nutz

    发送http请求,需要携带token数据,创建Header传输 Header header = Header.create(); header.set("Authorization" ...

  5. Linux(2)

    虚拟机关键配置名词解释 远程链接工具 linux准则 远程链接工具快捷键 系统相关命令 文件相关命令 linux目录结构 虚拟机关键配置名词解释 # 虚拟网络编辑器说明 桥接模式  # 可以访问互联网 ...

  6. 针对FILES和PATH的操作

    在修改漏洞的时候发现,根据建议都使用NIO包的FILES和PATH来进行文件操作,来保证安全性. import java.nio.file.Files;import java.nio.file.Pat ...

  7. 9.15 2020 实验 2:Mininet 实验——拓扑的命令脚本生成

    一.实验目的 掌握 Mininet 的自定义拓扑生成方法:命令行创建.Python 脚本编写   二.实验任务 通过使用命令行创建.Python 脚本编写生成拓扑,熟悉 Mininet 的基本功能. ...

  8. Go_day02

    Go基础语法 流程控制 一共有三种:顺序结构,选择结构,循环结构 if语句 /* if与else if的区别: 1:if无论是否满足条件都会向下执行,直到程序结束,else if 满足一个条件就会停止 ...

  9. 微信小程序中如何上传图片来识别身份证银行卡?

    Page({ shibie2(){ //识别银行卡 var that=this wx.chooseImage({ //选择图片 count: 1, //上传数量 sizeType: ['origina ...

  10. 【Beat】Scrum Meeting 1

    时间:2021年6月26日 1.各个成员今日完成的任务以及贡献小时数 姓名 今日完成任务 贡献小时数 鑫 编写软件的功能测试方案文档,录制视频演示软件系统安装配置过程 4 荣娟 编写软件的功能测试方案 ...