论文信息

论文标题:Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks
论文作者:Dong-Hyun Lee
论文来源:2013——ICML
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

  本文提出了一种简单有效的深度神经网络半监督学习方法。本文所提出的网络是在监督方式下同时使用标记和未标记数据进行训练。对于未标记数据,$\text{Pseudo-Label}$ 是选择具有最大预测概率的类,假设他们形如真实标签。

  伪标签等同于熵正则化,它有利于类之间的低密度分离,这是半监督学习通常假设的先验。

2 方法

  $\text{Pseudo-Label}$ 模型作为一个简单、有效的半监督学习方法早在 2013年就被提出,其核心思想包括两步:

    • 第一步:运用训练好的模型给予无标签数据一个伪标签,可以用概率最高的类别作为无标签数据的伪标签;
    • 第二步:运用 $\text{entropy regularization}$ 思想,将无监督数据转为目标函数(Loss)的正则项。实际中,就是将拥有伪标签的无标签数据视为有标签的数据,然后用交叉熵来评估误差大小;

  目标函数:

    $L=\frac{1}{n} \sum_{m=1}^{n} \sum_{i=1}^{C} L\left(y_{i}^{m}, f_{i}^{m}\right)+\alpha(t) \frac{1}{n^{\prime}} \sum_{m=1}^{n^{\prime}} \sum_{i=1}^{C} L\left(y_{i}^{\prime m}, f_{i}^{\prime m}\right)$

  其中,左边第一项为交叉熵,用来评估有标签数据的误差。第二项即为 $\text{entropy regularization}$ 项,用来从无标签的数据中获取训练信号;

  为了平衡有标签数据和无标签数据的信号强度,引入时变参数 $\alpha(t)$,随着训练时间的增加,$\alpha(t)$ 将会从零开始线性增长至某个饱和值。背后的核心想法也很直观,早期模型预测效果不佳,因此 $\text{entropy regularization}$ 产生信号的误差也较大,因而 $\alpha(t)$ 应该从零开始,由小逐渐增大;

     $\alpha(t)=\left\{\begin{array}{ll}0 & t<T_{1} \\\frac{t-T_{1}}{T_{2}-T_{1}} \alpha_{f} & T_{1} \leq t<T_{2} \\\alpha_{f} & T_{2} \leq t\end{array}\right.$

   其中,$\alpha_{f}=3$、$T_{1}=100$、$T_{2}=600$。

3 为什么伪标签有效

低密度分离

  聚类假设指出决策边界应位于低密度区域以提高泛化性能。

 熵正则化

  该方案通过最小化未标记数据的类概率的条件熵来支持类之间的低密度分离,而无需对密度进行任何建模。

    $H\left(y \mid x^{\prime}\right)=-\frac{1}{n^{\prime}} \sum_{m=1}^{n^{\prime}} \sum_{i=1}^{C} P\left(y_{i}^{m}=1 \mid x^{\prime m}\right) \log P\left(y_{i}^{m}=1 \mid x^{\prime m}\right)$

  熵是类重叠的量度,随着类别重叠的减少,决策边界处的数据点密度会降低。

使用伪标签作为熵正则化进行训练

  可视化结果:
  

  在使用神经网络进行分类时, $y^{u}=f_{\theta^{*}}^{*}\left(x^{u}\right)$ , 其中 $y_{u}$ 是 one-hot 编码。现在我们并不限制其必须是某个类 别, 而是将其看做1个分布, 我们希望这个分布越集中越好("非黑即白"), 因为分布越集中时它的含义就是样本 $x^{u}$ 属于某类别的概率很大属于其它类别的概率很小。
我们可以使用 Entropy 评估分布 $ y^{\mu}$ 的集中程度 $ E\left(y^{\mu}\right)=-\sum_{m=1}^{5} y_{m}^{\mu} \ln \left(y_{m}^{\mu}\right)$ , 假设是5分类, 其值越小则表示分布 $ y^{\mu}$ 越集中。

  如下图左侧所示, 上面两个的 $E$为 0 , 所以  $\mathrm{y}$  的分布很集中; 最后一个  $\mathrm{E}=1 / 5 $, 比上面两个大, 我们 只管也可以看出, 他的分布不那么集中。

    

参考

python 信息熵(含联合熵、条件熵)

迁移学习《Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks》的更多相关文章

  1. 迁移学习(IIMT)——《Improve Unsupervised Domain Adaptation with Mixup Training》

    论文信息 论文标题:Improve Unsupervised Domain Adaptation with Mixup Training论文作者:Shen Yan, Huan Song, Nanxia ...

  2. 迁移学习(JDDA) 《Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation》

    论文信息 论文标题:Joint domain alignment and discriminative feature learning for unsupervised deep domain ad ...

  3. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  4. 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》

    论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...

  5. 虚假新闻检测(CADM)《Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain Mixup》

    论文信息 论文标题:Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversari ...

  6. 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》

    论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...

  7. Unsupervised Domain Adaptation by Backpropagation

    目录 概 主要内容 代码 Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015. ...

  8. Deep Transfer Network: Unsupervised Domain Adaptation

    转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...

  9. Unsupervised Domain Adaptation Via Domain Adversarial Training For Speaker Recognition

    年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.        

  10. 论文笔记:Unsupervised Domain Adaptation by Backpropagation

    14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...

随机推荐

  1. nuxt,js中关于服务端不能使用localStorage和cookie的解决方案

    参考链接:https://www.npmjs.com/package/cookie-universal-nuxt 1.安装下载 npm i --save cookie-universal-nuxt 2 ...

  2. Delphi书籍大全【阿里云盘】

    「marco cantu的Object Pascal Handbook」等文件 https://www.aliyundrive.com/s/sJtUo8ziUpV 提取码: 5tp6点击链接保存,或者 ...

  3. MySQL的卸载与安装

    卸载 1.右键点击我的电脑 -->服务-->停掉MySQL的服务 2.控制面板卸载MySQL 3.删除隐藏文件夹 C:\ProgramData下的MySQL文件夹 4.删除MySQL文件夹 ...

  4. Python第四章

    import datetime # 定义一个列表 mot = ["今天星期一:\n坚持下去不是因为我坚强,而是因为我别无选择.",        "今天星期二:\n含泪播 ...

  5. Eclipse导入第四版《算法》algs4库

    最近在研究<算法>,遇到algs4库导入eclipse问题,查了很多网站,都不适用,最终解决,特此记录一下.第一次写博客,有什么不足之处望各位大神纠正. 1. 首先打开eclipse软件, ...

  6. 深入理解css 笔记(完)

    一个网站,从看起来还可以,到看起来非常棒,差别在于细节.在实现了页面里 某个组件的布局并写完样式之后,不要急着继续,有意识地训练自己,以挑剔的眼光审视刚刚完成的代码.如果增加或者减少一点内边距是不是看 ...

  7. 在winodws server r2上安装AD域

    一.创建第一个域 服务器管理-管理--添加角色和功能 其他都是默认值,下一步 二.重启后,已域账号登录 三.检查AD域有没有安装成功 1.查看计算机名 更改计算机名 2.检查是否含有以下,AD管理中心 ...

  8. python+appium拉起APP

      1.首先需要完成环境配置: JDK:https://www.cnblogs.com/wenlongma/p/17103062.html: SDK:https://www.cnblogs.com/w ...

  9. 实践Pytorch中的模型剪枝方法

    摘要:所谓模型剪枝,其实是一种从神经网络中移除"不必要"权重或偏差的模型压缩技术. 本文分享自华为云社区<模型压缩-pytorch 中的模型剪枝方法实践>,作者:嵌入式 ...

  10. 141. Linked List Cycle (Easy)

    ps:能力有限,若有错误及纰漏欢迎指正.交流 Linked List Cycle (Easy) https://leetcode.cn/problems/linked-list-cycle/descr ...